YOSHIMURA, GWEN

From: Jason Low <<u>JLow@aqmd.gov></u>
Sent: Friday, June 27, 2014 3:36 PM

To: Kurpius, Meredith

Cc: YOSHIMURA, GWEN;Flagg, MichaelA;CHANG, RANDALL;Connie Ventura;Rene

Bermudez; Kevin Durkee; Joe Cassmassi; William Wong; Laki

Tisopulos;mmiyasato@agmd.gov

Subject: Submittal of 2014 SCAQMD Annual Network Plan

Attachments: Annual AQ Monitoring Network Plan, 2014_Submittal Letter.pdf; Final2014-Annual-Air-

Quality-Monitoring-Network-Plan.pdf; 2014-AAQMNP-Appendix-A.pdf; 2014-

AAQMNP-Appendix-B.pdf; 2014-AAQMNP-Appendix-C.pdf

Hi Meredith,

Please find the attached the submittal letter for the 2014 SCAQMD Annual Air Quality Network Plan and associated documents for it. The detailed site reports are available online now and the final plan will be available on June 30, 2014 at:

http://www.aqmd.gov/home/library/clean-air-plans/monitoring-network-plan

As mentioned in the submittal letter and discussed with Region 9 staff, any comments received during the public comment period and SCAQMD responses to those comments will be forwarded to your office soon.

If you have any questions or did not receive the submittal letter, final plan, and/or three appendices, please contact me. Thank you and have a great weekend!

Sincerely, Jason

Jason C. Low, Ph. D
Atmospheric Measurements Manager
South Coast Air Quality Management District
21865 Copley Drive
Diamond Bar, CA 91765-4182
(909) 396-2269
(909) 396-3657 [FAX]
jlow@aqmd.gov

(909) 396-2000 • www.aqmd.gov

June 27, 2014

Meredith Kurpius, Ph. D. Air Quality Analysis Office 75 Hawthorne St., AIR-7 San Francisco, CA 94105

Dear Meredith:

The South Coast Air Quality Management District (SCAQMD) is pleased to submit the 2014 Annual Air Quality Monitoring Network Plan for review. Attached is the final plan with Appendices A to C. The detailed site reports are available online at http://www.aqmd.gov/home/library/clean-air-plans/monitoring-network-plan. This submitted plan will be available online as of June 30, 2014 at noon.

This report fulfills the Federal Regulatory requirement for an annual review of the SCAQMD Air Quality Monitoring Network Plan. The plan recognizes and reports needs for additions, relocations, or terminations of monitoring sites and instrumentation. It includes a review of actions taken during the 2013-2014 fiscal year and plans for action in the year ahead.

The draft plan was made available since May 30, 2014 to allow for public comment per Federal Regulations and a public workshop was held on June 19, 2014 at SCAQMD. Comments received during the public comment period along with responses to those comments are to be forwarded to you in the coming weeks.

Thank you for your consideration. If you have any questions, please contact me via phone (909-396-2269) or email (jlow@aqmd.gov). I look forward to hearing from you.

Sincerely,

Jason C. Low, Ph. D.

Atmospheric Measurements Manager

JCL:cv

cc: Gwen Yoshimura Michael Flagg Randall Chang

Attachment: 2014 Annual Air Quality Monitoring Network Plan

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT ANNUAL AIR QUALITY MONITORING NETWORK PLAN

July, 2014

Prepared by

Rene M. Bermudez Principal Air Quality Instrument Specialist

> Andrea Polidori Ph. D Quality Assurance Manager

Jason Low Ph. D Atmospheric Measurements Manager

Table of Contents

	Page
Introduction	1
Public Comments	1
Network Design	1
Special Programs	19
Recent or Proposed Modifications to Network	22
Minimum Monitoring Requirements	37
Data Submittal and Archiving Requirements	44
Appendix A: Network Depiction Maps	
 Ozone Monitoring Locations 	A-1
 PM10 Monitoring Locations 	A-2
 Nitrogen Dioxide Monitoring Locations 	A-3
 Carbon Monoxide Monitoring Locations 	A-4
Sulfur Dioxide Monitoring Locations	A-5
Source and Ambient Lead Monitoring Locations	A-6
 PAMS Monitoring Locations 	A-7
PM2.5 Monitoring Locations	A-8
Appendix B: Detailed Site Information	
Appendix C: PM2.5 Continuous Monitor Comparability Assessment	
and Request for Waiver	
1	

INTRODUCTION

An annual review of the Air Quality Monitoring Network is required by Federal Regulations as a means to identify and report needs for additions, relocations, or terminations of monitoring sites or instrumentation. This report describes the network of ambient air quality monitors in the jurisdiction of and operated by the South Coast Air Quality Management District (SCAQMD). It includes a review of actions taken during the 2013-2014 fiscal year and plans for action in the year ahead. This plan addresses the requirement for an annual network plan as listed in Title 40, Part 58, Section 10 of the Code of Federal Regulations (40 CFR § 58.10). Regulations require the report be submitted to the U.S. Environmental Protection Agency (EPA) by July 1 of each year after a 30 day public comment period.

The SCAQMD staff, along with the California Air Resources Board (CARB), conducted an extensive review of the air monitoring sites in the South Coast Air Basin (SCAB) in late 1980. During the review, State and Local Air Monitoring Stations (SLAMS) designations, site type, and spatial scales of representativeness were assigned to the criteria pollutants monitored at each site. Since that time, the EPA Region IX and CARB staff visited selected sites to confirm compliance with applicable siting criteria and related requirements. The most recent site visits occurred in 2010 to conduct a comprehensive Technical System Audit (TSA) of the ambient air monitoring network. Each year, SCAQMD staff conducts an annual review of its air monitoring network and submits it to the EPA. The review process focuses on current and future network air monitoring strategies and network changes are made in consultation with the EPA and CARB. When re-location of monitoring sites is required, site reports are updated in the EPA's Air Quality System (AQS) to document compliance with established siting criteria for the new locations.

Public Comments

Pursuant to Federal regulations, a draft plan is made available for public inspection and comment for a period of 30 days prior to submission of the final plan to EPA. Hard copies of the final document are made available on July 1, 2014 at the SCAQMD's Public Information Desk in Diamond Bar, CA. The document is also available on the SCAQMD as of May 19, 2014 in the drop down menu under the "Library", "Clean Air Plans" and "Air Monitoring Network Plan." (http://www.aqmd.gov/home/library/clean-air-plans/monitoring-network-plan). The final document is submitted to the EPA on July 1, 2014. Public comments and responses are also submitted to EPA to fulfill Federal regulatory requirements.

Network Design

The SCAQMD operates 38 permanent, monitoring stations, and 4 single-pollutant source impact Lead (Pb) air monitoring sites in the SCAB and a portion of the Salton Sea Air Basin in Coachella Valley. This area includes Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties. The newest permanent site was added during the MATES IV project to monitor Ozone (O3) and continuous PM2.5 for the Long Beach area. The newest source Pb sites were added in January 2010 as required by EPA regulation. Table 1 provides a list of monitoring locations, the EPA AQS site codes, and the pollutants measured at each site. Table 2 provides the spatial scale and the site type for each monitor at all sites.

Table 3 describes the monitoring purpose for the monitors at each site. Table 4 describes the site type, spatial scale and monitoring purpose for continuous particulate analyzers at each site. A requirement of the annual network plan implemented in 2007, the *monitoring purpose* is the reason why a certain pollutant is being measured at a certain site.

A list and description of monitoring purposes are provided below and portions are adapted from the CARB annual network plan for 2007.

Background Level monitoring is used to determine general background levels of air pollutants as they enter the SCAB.

High Concentration monitoring is conducted at sites to determine the highest concentration of an air pollutant in an area within the monitoring network. A monitoring network may have multiple high concentration sites (i.e., due to varying meteorology year to year).

Pollutant Transport is the movement of pollutant between air basins or areas within an air basin. Transport monitoring is used to assess and mitigate upwind areas when transported pollutant affects neighboring downwind areas. Also, transport monitoring is used to determine the extent of regional pollutant transport among populated areas and to rural areas.

Population Exposure monitoring is conducted to represent the air pollutant concentrations that a populated area is exposed to.

Representative Concentration monitoring is conducted to represent the air quality concentrations for a pollutant expected to be similar throughout a geographical area. These sites do not necessarily indicate the highest concentrations in the area for a particular pollutant.

Source Impact monitoring is used to determine the impact of significant sources or source categories of air quality emissions on ambient air quality. The air pollutant sources may be stationary or mobile.

Trend Analysis monitoring is useful for comparing and analyzing air pollution concentrations over time. Usually, trend analyses can be used to assess the progress in improving air quality for an area over a period of many years.

Site Comparison monitoring is used to assess the effect on measured pollutant levels of moving a monitoring location a short distance (usually less than two miles). Some monitoring stations become no longer usable due to development, change of lease terms, or eviction. In these cases, attempts are made to conduct concurrent monitoring at the old and new site for a period of at least one year in order to compare pollutant concentrations.

Real Time Reporting/Modeling is used to provide data to EPA's AIRNOW system which reports conditions for air pollutants on a real time basis to the general public. Data is also used to provide accurate and timely air quality forecast guidance to residents of the SCAB.

Multiple purposes for measuring a pollutant at a particular site are possible. There is some overlap between site type and monitoring purposes as defined by EPA and given in Tables 2, 3, and 4.

TABLE 1. List of Monitoring Sites

	Location Location	AQS No.	Pollutants Monitored	Start Date
1	Anaheim	060590007	CO,NO2,O3,PM10,PM2.5	08/01
2	Anaheim Near Road	060590008	NO2	1/14
3	ATSF (Exide)	060371406	Pb	01/99
4	Azusa	060370002	CO,NO2,O3,PM10,PM2.5,SO4	01/57
5	Banning Airport	060650012	NO2,O3,PM10, PM2.5	04/97
6	Big Bear	060718001	PM2.5	02/99
7	Burbank	060371002	CO,NO2,SO2,O3,PM10,PM2.5	10/61
8	Closet World (Quemetco)	060371404	Pb	10/08
9	Compton	060371302	CO,NO2,O3,Pb,PM2.5	01/04
10	Costa Mesa	060591003	CO,NO2,SO2,O3	11/89
11	Crestline	060710005	O3,PM10	10/73
12	Fontana	060712002	CO,NO2,SO2,O3,PM10,PM2.5,SO4	08/81
13	Glendora	060370016	CO,NO2,O3,PM2.5,PM10	08/80
14	Indio	060652002	O3,PM10,PM2.5	01/83
15	La Habra	060595001	CO,NO2,O3	08/60
16	Lake Elsinore	060659001	CO,NO2,O3,PM2.5,PM10	06/87
17	LAX Hastings	060375005	CO,NO2,O3,PM10,Pb,SO4	04/04
18	Long Beach (Hudson)	060374006	CO, NO2,SO2,O3,PM10	1/10
19	Long Beach (North) 1	060374002	PM2.5	10/62
20	Los Angeles (Main St.)	060371103	CO,NO2,SO2,O3,PM10,Pb,PM2.5,SO4	09/79
21	Mira Loma (Van Buren)	060658005	CO,NO2,O3,PM10,PM2.5	11/05
22	Mission Viejo	060592022	CO,O3,PM10,PM2.5	06/99
23	Norco	060650003	PM10	12/80
24	Ontario Fire Station	060710025	PM10,PM2.5	01/99
25	Ontario Near Road	Unavailable	NO2	6/14
26	Palm Springs	060655001	CO,NO2,O3,PM10,PM2.5	04/71
27	Pasadena	060372005	CO,NO2,O3,PM2.5,SO4	04/82
28	Perris	060656001	O3,PM10	05/73
29	Pico Rivera #2	060371602	CO,NO2,O3,Pb,PM2.5,SO4,PM10	09/05
30	Pomona	060371701	CO,NO2,O3	06/65
31	Redlands	060714003	O3,PM10	09/86
32	Rehrig (Exide)	060371405	Pb	11/07
33	Reseda	060371201	CO,NO2,O3,PM2.5	03/65
34	Riverside (Magnolia)	060651003	CO,NO2,Pb,PM10,PM2.5,SO4	10/72
35	Rubidoux	060658001	CO,NO2,SO2,O3,PM10,Pb,PM2.5,SO4	09/72
36	San Bernardino	060719004	CO,NO2,O3,PM10,Pb,PM2.5	05/86
37	Santa Clarita	060376012	CO,NO2,O3,PM10,PM2.5	05/01
38	South Long Beach	060374004	PM10,Pb,PM2.5,SO4	06/03
39	Temecula	060650016	O3, PM2.5	06/10
40	Uddelholm (Trojan Battery)	060371403	Pb	11/92
41	Upland	060711004	CO,NO2,O3,Pb,PM2.5,PM10,SO4	03/73
42	West Los Angeles	060370113	CO,NO2,O3,SO4	05/84

Some pollutants were discontinued at Long Beach (North) on 9/30/2013 due to termination of lease.

TABLE 2. FRM/FEM Criteria Pollutant Spatial Scales and Site Type

SPATIAL SCALE SITE TYPE

MI – Microscale

MS – Middle Scale

NS – Neighborhood Scale

HC – Highest Concentration

PE – Population Exposure

IM – Source Oriented (Impact)

US – Urban Scale BK – General Background

Location	CO	NO2	SO2	O3	Manual PM10	Manual PM2.5	Pb
Anaheim	NS/PE	US/PE		NS/PE	NS/PE	NS/PE	
Anaheim Near Road		MI/HC					
ATSF (Exide)							MI/IM
Azusa	NS/PE	US/PE		US/HC	NS/PE	NS/PE	
Banning Airport		NS/PE		NS/PE	NS/PE		
Big Bear						NS/PE	
Burbank	NS/HC	NS/PE	NS/PE	US/HC	NS/PE	NS/PE	
Closet World (Quemetco)							MI/IM
Compton	MS/HC	MS/PE		NS/PE		NS/PE	NS/PE
Costa Mesa	NS/PE	NS/PE	NS/PE	NS/PE			
Crestline				NS/HC	NS/PE		
Fontana	NS/PE	US/PE	NS/PE	US/PE	NS/HC	NS/PE	
Glendora	NS/PE	NS/PE		NS/HC			
Indio				NS/PE	NS/HC	NS/PE	
La Habra	NS/PE	US/PE		NS/PE			
Lake Elsinore	NS/PE	NS/PE		NS/PE			
LAX Hastings	MS/PE/BK	MS/PE/BK	NS/PE/BK	NS/PE/BK	NS/PE/BK		NS/PE/BK
Long Beach (Hudson)	NS/HC	NS/PE	NS/HC	NS/PE	NS/PE		
Long Beach (North)						NS/HC	
Los Angeles (Main St.)	NS/PE	NS/HC	NS/PE	NS/PE	NS/PE	NS/HC	NS/PE
Mira Loma (Van Buren)	NS/PE	NS/PE		NS/PE	NS/HC	NS/HC	
Mission Viejo	NS/PE			NS/PE	NS/PE	NS/PE	
Norco					NS/PE		
Ontario Fire Station					NS/HC	NS/PE	
Ontario Etiwanda Near Road		MI/HC					
Palm Springs	NS/PE	NS/PE		NS/PE	NS/PE	NS/PE	
Pasadena	MS/PE	MS/HC		NS/PE		NS/PE	
Perris				NS/PE	NS/PE		
Pico Rivera #2	NS/PE	NS/HC		NS/HC		NS/PE	NS/PE
Pomona	MI/PE	MS/PE		NS/HC			
Redlands				NS/PE	NS/PE		
Rehrig (Exide)							MI/IM
Reseda	NS/PE	US/PE		US/HC		NS/PE	
Riverside	MI/HC	US/PE				NS/HC	MI/HC
Rubidoux	NS/PE	US/PE	NS/PE	US/HC	NS/HC	NS/HC	NS/PE
San Bernardino	MS/PE	US/PE		NS/HC	NS/HC	NS/PE	NS/PE
Santa Clarita	NS/PE	NS/PE		US/HC	NS/PE	NS/PE	
South Long Beach		-			NS/HC	NS/HC	NS/HC
Temecula				NS/HC			1
Uddelholm (Trojan Battery)							MI/IM
Upland	NS/PE	NS/PE		NS/PE			NS/PE
West Los Angeles	NS/PE	MS/HC		NS/PE	1	1	1

Some pollutants were discontinued at Long Beach (North) on 9/30/2013 due to termination of lease.

TABLE 3. FRM/FEM Criteria Pollutant Monitoring Purposes

MONITORING PURPOSE

 $\begin{array}{ccc} BK-Background & RC-Representative \ Concentration \\ HC-High \ Concentration & RM-Real-Time \ Reporting/Modeling \end{array}$

TP – Pollutant Transport
EX – Population Exposure
SO – Source Impact
TR – Trend Analysis
CP – Site Comparisons
CO - Collocated

Location	СО	NO2	SO2	03	Manual PM10	Manual PM2.5	Pb
Anaheim	TR	TR/RC		TR	TR/RC	TR/EX	
Anaheim Near Road		EX/HC					
ATSF (Exide)							SO
Azusa	TR	TR/RC		TR	TR	TR/EX	
Banning Airport		TP/RC		TP	TP		
Big Bear						EX/SO/TP	
Closet World (Quemetco)							SO
Burbank	TR	TR/RC	TR	TR	TR/RC	TR/EX	
Compton	TR/HC	TR/RC		TR/RC		EX/RC	EX
Costa Mesa	RC	TR/RC	TR	RC			
Crestline				НС	TP/RC		
Fontana	RC	TP/RC	TR	RC	НС	EX/TP	
Glendora	RC	TR/RC		НС			
Indio				TP	HC/CO	TP/EX	
La Habra	RC	TR/RC		RC			
Lake Elsinore	TP/RC	TP/RC		TP/RC			
LAX Hastings	BK	BK	BK	BK	BK		BK
Long Beach (Hudson)	TR	TR/RC	TR/HC	TR	TR/RC		
Long Beach (North) 1						EX/HC	
Los Angeles (Main St.)	SO/RC	SO/HC	TR	TR/RC	TR/RC/CO	EX/HC/CO	EX/CO
Mira Loma (Van Buren)	TR/RC	TR/RC		TR/HC	НС	EX/HC/CO	
Mission Viejo	RC			TR/RC	TR/RC	EX/RC	
Norco					TR/RC		
Ontario Fire Station					HC/CO	EX/RC	
Ontario Etiwanda Near Road		EX/HC					
Palm Springs	TP/RC	TP/RC		TP	TP/HC	EX/TP	
Pasadena	TR/RC	TR/HC		TR/RC		EX/RC	
Perris				TP	TR		
Pico Rivera #2	RC	HC		НС		EX/RC	EX
Pomona	RC	RC		НС			
Redlands				TP/RC	TP/RC		
Rehrig (Exide)							SO/CO
Reseda	RC	TR/RC		НС		EX/RC	
Riverside	НС	TR/RC				EX/HC	EX/CO
Rubidoux	TR/RC	TR/RC	TR	TR/HC	TR/HC/CO	EX/TR/HC/CO	EX
San Bernardino	TR/RC	TP/RC		TR/HC	TR/HC	EX/TR	EX
Santa Clarita	RC	TP/RC		TP/HC	RC	EX/RC	
South Long Beach					НС	EX/SO	EX
Uddelholm (Trojan Battery)							SO
Temecula				TR/HC			
Upland	RC	TR/RC		TR/RC			EX
West Los Angeles	RC	TR/HC		RC			

Some pollutants were discontinued at Long Beach (North) on 9/30/2013 due to termination of lease.

TABLE 4. Continuous PM₁₀/PM_{2.5} Monitoring Purpose, Site Type and Spatial Scales

<u>SITE TYPE</u> <u>SPATIAL SCALE</u> <u>INSTRUMENT TYPE</u>

HC – High Concentration MI – Microscale TEOM

PE – Population Exposure NS – Neighborhood Scale BAM (NON-FEM)
BK - Background BAM (FEM)

MONITORING PURPOSE

 $\begin{array}{ll} SO-Source\ Impact & RM-Real\mbox{-}Time\ Reporting/Modeling \\ TP-Pollutant\ Transport & SPM-Special\ Purpose\ Monitoring \\ \end{array}$

TR – Trend Analysis CO - Collocated

Location	Co	ntinuous P	M10		Cor	ntinuous PM2.	5		PM10 – 2.5			
	Type	Purpose	Site Type	Scale	Туре	Purpose	Site Type	Scale	Operational			
Anaheim	BAM/FEM	RM/TR	PE	NS	BAM/FEM	RM/TR	PE	NS				
Banning Airport					BAM/NON-FEM	RM	PE	NS				
Burbank	TEOM/FEM	RM/TR	PE	NS	BAM/FEM	RM/TR	PE	NS				
Crestline					BAM/NON-FEM	RM	PE	NS				
Glendora	BAM/FEM	RM	PE	NS	BAM/NON-FEM	RM	PE	NS				
Indio	TEOM/FEM	RM	HC	NS								
Lake Elsinore	TEOM/FEM	RM	PE	NS	BAM/NON-FEM	RM	PE	NS				
Long Beach (North) 1												
Los Angeles (Main St.)	BAM/FEM	RM/TR	PE	NS	BAM/FEM	RM	НС	NS	Yes			
Mira Loma (Van Buren)	BAM/FEM	RM	НС	NS	BAM/FEM	RM	НС	NS				
Palm Springs	TEOM/FEM	RM/TP	HC	NS								
Reseda					BAM/NON-FEM	RM	PE	NS				
Riverside	BAM/FEM	RM	HC	NS	BAM/NON-FEM	RM	НС	NS				
Rubidoux	TEOM/FEM	RM/TR	НС	NS	BAM/FEM & NON-FEM	RM/TR/CO	НС	NS	Yes			
San Bernardino	TEOM/FEM	RM/TR	НС	NS								
Santa Clarita					BAM/NON-FEM	RM	PE	NS				
South Long Beach					BAM/FEM	RM/SO	PE	NS				
Temecula					BAM/NON-FEM	RM	PE	NS				
Upland	BAM/FEM	RM	PE	NS	BAM/NON-FEM	RM	PE	NS				

Some pollutants were discontinued at Long Beach (North) on 9/30/2013 due to termination of lease

A brief description of the criteria pollutant and program monitoring networks are provided below:

OZONE (O3)

The SCAQMD operates 30 sites where O3 measurements are made as part of the Air Monitoring Network. O3 sites are spread throughout the SCAB with highest concentrations measured inland. Figure 1 in Appendix A shows the spatial distribution of these sites and Table 16 shows the minimum monitoring requirements.

PM10

Size-selective inlet manual high volume samplers are operated at 21 sites to meet the requirements for PM10 Federal Reference Method (FRM) sampling. The PM10 monitoring network contains one site within 25% of the Federal NAAQS at Indio, as shown in the 2012 Air Quality Data Table (http://www.aqmd.gov/home/library/air-quality-data-studies/historical-data-by-year), Figure 9. The Indio, Rubidoux, and Ontario sites are designated PM10 collocated as shown in Table 24. All PM10 FRM monitors operate on a one day in six day schedule, with the exception of Indio and Rubidoux which operate on one day in three day schedule. The Indio and Los Angeles (Main) sites are shown as design value sites in Table 18. Based upon the design values, the Indio site meets the minimum sampling schedule requirement as does the Los Angeles (Main) site. The remaining sites meet or exceed the minimum 6 day sample schedule requirement.

PM10 continuous analyzers are operated at 12 sampling sites. These real-time devices are capable of making hourly particulate concentration measurements. Table 4 describes the monitor type, site type, monitoring purpose, and spatial scale for continuous particulate analyzers. Figure 2 in Appendix A shows the spatial distribution of the sampling sites and Table 18 shows the minimum monitoring requirements. Real-time monitors, for the most part, are clustered in the high concentration areas, with two located in the desert area where wind-blown crustal material has caused exceedances of the twenty-four hour standard during exceptional events. In downwind areas of the SCAB, a large fraction of particulate is formed in the atmosphere; PM10 reaches maximum levels during late summer through early winter months.

Where both 24 hour PM10 FRM samplers and PM10 FEM continuous analyzers are deployed together, they are sited as collocated for data comparison purposes. The 24 hour FRM PM10 sampler remains the primary analyzer used for attainment purposes.

PM10-2.5

PM10-2.5 (PM Coarse) is required at NCore sites only and is derived from the continuous BAM PM10 and PM2.5 particulate monitors at those sites. The Purpose, Site Type and Scale are similar to the continuous PM10 and PM2.5 instruments from which data is calculated. PM Coarse is currently measured at the Los Angeles (Main St.) and Rubidoux sites and is shown in Table 4.

NITROGEN DIOXIDE (NO2)

The area wide NO2 network consists of 25 sites. These sites are mostly located in areas of highest NO2 concentration. The Near Road monitoring network consists of two sites which began in 2014 and two additional to begin January 1, 2015 which are located adjacent to the most heavily traveled roadways identified in the basin. The spatial distribution of NO2 monitors is shown in Figure 3 in Appendix A and minimum monitoring requirements are shown in Table 19. Additionally, the Regional Administrator identified 40 NO2 sites nationwide with a primary focus on siting these monitors in locations to protect susceptible and vulnerable populations. The Regional Administrator in collaboration with SCAQMD indentified the Los Angeles (Main), Long Beach (North) and San Bernardino sites from the existing area-wide monitoring network to meet this requirement (58.10[a][5]). Review of 1992 through 2012 NO2 data shows the State and Federal standards for NO2 were not exceeded. The Long Beach (North) site NO2 was closed on 9/30/2013 due to termination of the lease by owner. SCAQMD is in the process of identifying a new monitoring location and potential consolidation with nearby sites.

On February 9, 2010 EPA promulgated new minimum monitoring requirements for NO2 which require state and local agencies to install near road monitoring sites. On March 7, 2013 EPA revised the Ambient Nitrogen Dioxide Requirements postponing initial near road monitoring site implementation until January 1, 2014 and additional site implementation until January 1, 2015. The plan for the near road network is detailed in the section titled, "Recent or Proposed Modifications to Network."

CARBON MONOXIDE (CO)

Area wide CO monitors measure concentrations at 22 locations and microscale measurements are taken at 3 locations within the SCAQMD ambient air monitoring network. Figure 4 in Appendix A shows the spatial distribution of these sites. CO emissions, primarily from motor vehicles, show a pattern consistent with major freeway arteries. A review of data for 2013 shows State and Federal standards for CO were not exceeded.

On August 31, 2011 EPA issued the Final Rule for the Review of National Ambient Air Quality Standards for CO. EPA revised the minimum requirements for CO monitoring by requiring CO monitors to be sited near roads in certain urban areas. EPA requires the collocation of one CO monitor with a near road NO2 monitor in urban areas having populations of 1 million or more. EPA is specifying that required monitors in Core Based Statistical Areas (CBSA) of 2.5 million or more persons be operational by January 1, 2015.

One near road CO monitoring site is required in each of the Los Angeles-Long Beach-Santa Ana MSA\CBSA (Code 31100) and the Riverside-San Bernardino-Ontario MSA\CBSA (Code 40140) areas. Near road CO monitoring is to be implemented concurrently with the near road NO2 monitoring. The minimum monitoring requirements are shown in Table 21. The plan for the near road network is detailed in the section titled, "Recent or Proposed Modifications to Network."

SULFUR DIOXIDE (SO2)

SO2 monitors are located at 7 sites. Figure 5 in Appendix A shows the spatial distribution of the sites. Most SO2 emissions come from Federal transportation sources such as marine vessels. The monitors are clustered mostly in the areas where these sources are located.

On June 22, 2010 EPA strengthened the SO2 National Ambient Air Quality Standard (NAAQS). Network design requirements included new minimum requirements be determined by the Population Weighted Emissions Index (PWEI).

The PWEI shall be calculated by States for each CBSA they contain or share with another State or States for use in the implementation of or adjustment to the SO2 monitoring network. The PWEI shall be calculated by multiplying the population of each CBSA, using the most current census data or estimates, and the total amount of SO2 in tons per year emitted within the CBSA area, using an aggregate of the most recent county level emissions data available in the National Emissions Inventory (NEI) for each county in each CBSA. The resulting product shall be divided by one million, providing a PWEI value, the units of which are million persons-tons per year. For any CBSA with a calculated PWEI value equal to or greater than 1,000,000, a minimum of three SO2 monitors are required within that CBSA. For any CBSA with a calculated PWEI value equal to or greater than 1,000,000, but less than 1,000,000, a minimum of two SO2 monitors are required within that CBSA and for any CBSA with a calculated PWEI value equal to or greater than 5,000, but less than 100,000, a minimum of one SO2 monitor is required within that CBSA.

TABLE 5. PWEI Calculation and Minimum Required SO2

CBSA	Population Estimate	NEI SO2 Emmissions	PWEI Value	Minimum Required SO2
31080	13,131,431	12,062.81	158,402	2
40140	4,380,878	2,316.73	10,149	1

SCAQMD exceeds the minimum requirement for SO2 monitors; the Federal standard has not been exceeded for nearly 33 years.

PARTICULATE LEAD

Total Suspected Particulate (TSP) Pb measurements are collected at 13 sites as part of the network; 4 of the sites are Source Impact for Pb, and the remaining 9 sites measure ambient Pb and selected ions such as sulfates (SO4).

In 1990, the EPA requested that the SCAQMD collect ambient air particulate samples near several large Pb handling (battery recycling) facilities. Long-term source impacted monitoring began in 1991. A facility in the City of Industry exceeded the Federal ambient particulate Pb standard during the second quarter of Fiscal Year 1991-92. Pb monitoring at a facility in the City of Torrance ended in 1993 when measurements were consistently below the ambient standard. Sampling ended at a facility in the City of Commerce in 2006 when the business was closed. Out of the two facilities currently being monitored, the

facility in the City of Vernon exceeded the old Federal ambient particulate Pb standard (1.5 ug/m3 quarterly) during the first quarter of 2008; the other facility was found to remain below this level.

The Rehrig (Exide) microscale site measures the highest Pb concentrations in the monitoring network. Upon review of data (2010-2012) Rehrig (Exide) Pb monitoring site measured 0.46 ug/m3 as a 3 month rolling average. The Rehrig (Exide) monitoring location has been designated as a collocated monitoring location for the source oriented Pb monitoring network along with the Los Angeles, and Riverside sites. Collocation requirements are shown in Table 24. Previously, the Long Beach (North) site was designated as a collocated site for Pb but on 9/30/2013 the lease was terminated at the owners request. The SCAQMD continues to exceed the minimum monitoring requirements with the closure of the Long Beach (North) Pb site. The spatial distribution of these sites is shown in Figure 6 in Appendix A.

On November 12, 2008, the EPA issued final revisions to the NAAQS for Pb. Network design requirements included monitoring for sources of Pb (source oriented monitoring) and urban Pb monitoring (non-source oriented). To meet this requirement, a source oriented site was established on January 1, 2010 at the Van Nuys Airport and monitoring continues at the sites surrounding the Exide (Vernon), Quemetco (Industry), and the Trojan Battery facilities. Existing urban Pb monitoring conducted at Compton, LAX Hastings, Los Angeles (Main), Pico Rivera, Riverside Magnolia, Rubidoux, San Bernardino, South Long Beach, and Upland exceed the minimum monitoring requirements.

The final rule for Pb went into effect on January 26, 2011. In the final rule the Van Nuys Airport was no longer included on the list of airports where Pb monitoring was required, and a more recent emissions inventory showed Pb emissions less than 1 ton per year. The landowner advised SCAQMD the lease would not be renewed at the end of the three year contract period. Data review from the Van Nuys Airport Pb site showed no exceedances of the three month rolling average during the monitoring period. In consultation EPA the site was discontinued on June 4, 2013 based upon conditions cited in 40 CFR 58 Appendix D 4.5. Official notification of site closure for Van Nuys is to be submitted to EPA separately from the ANP.

Previous NEI data (2008) showed the Long Beach Airport, Daugherty Field just over the requirement for Pb source monitoring at 1.02528004 tpy. Since then, the most recent data published (NEI 2011, http://www.epa.gov/ttnchie1/net/2011inventory.html) indicates Pb emissions have dropped below the requirement for Pb source monitoring at 0.80 tpy. As part of the MATES IV program, SCAQMD plans to conduct a preliminary study to determine the need for long term Pb source monitoring at the Long Beach Airport. A determination will be made in consultation with EPA Region IX on the need for long term monitoring at the time of the 5 year network assessment in 2015.

Photochemical Assessment Monitoring Stations

The Photochemical Assessment Monitoring Stations (PAMS) network was initiated in June 1994 at Pico Rivera and Upland. During 1995 sites were established at Banning and

Azusa to determine speciated hydrocarbon O3 precursor compounds in ambient air. PAMS monitoring at Hawthorne commenced in June 1997 and the Burbank station became a PAMS site in July 1997. In May 2001, the Santa Clarita location was established as a PAMS site. In April 2004, the Hawthorne site was replaced by LAX Hastings, due to the end of a property lease. In August 2005, the Pico Rivera station moved to a new location one half mile south of the previous site, also due to the end of the property lease.

On October 17, 2006, the EPA issued final amendments to PAMS monitoring requirements in 40 CFR § 58. The changes made to the rule were to implement recommendations made by the PAMS workgroup formed to assess the program. The workgroup recommended changes be made to site type and monitoring objectives. During September 2008, a report from the EPA PAMS network assessment project workgroup was issued. The objectives of the workgroup were to assess how well the current PAMS network was meeting monitoring objectives, determine which sites are most useful for meeting objectives, identify potentially redundant, ineffective, or unnecessary sites, and to assess other enhanced O3 monitoring activities that may prove useful.

To address regulatory changes, site-specific observations from the PAMS network assessment project, and potential synergies between programs, SCAQMD made the following changes in June 2009 to the PAMS monitoring network:

- Burbank was reclassified from Type 2/1 to Type 2. This change addressed the National PAMS Network Assessment observation that Burbank should be reclassified to a Type 2 precursor site. The recommendation is consistent with the heavily urbanized/industrialized area, which is impacted by high levels of O3 precursor emissions.
- Santa Clarita was reclassified as Type 3 from Type 2. Although the National PAMS Network Assessment observed that Santa Clarita was consistent with a Type 2 site, recent data was more consistent with a Type 3 maximum O3 concentration site rather than a Type 2 O3 precursor site.
- Banning was relocated to Los Angeles (Main). The National PAMS Network Assessment observed that Banning had the lowest O3 concentrations of all the Type 2 sites and should be reclassified to a Type 3 or 4 site. Instead, to create synergies between programs, SCAQMD relocated the Banning PAMS site to the Los Angeles (Main) site as Type 2. This satisfies the EPA recommendation for use of the same monitoring platform and equipment to meet the objectives of multiple programs. Los Angeles (Main) is also a National Air Toxics Trends Station (NATTS), a National Core-Multi-pollutant Monitoring Station (NCore), and a Speciation Trends Network (STN) site.
- Azusa was reclassified from Type 3 to Type 2. This proposed change addresses the National PAMS Network Assessment observation that Azusa has high Volatile Organic Compounds (VOC) and Oxides of Nitrogen (NOX) concentrations, with lower O3 concentrations. The site now more closely resembles a Type 2 O3 precursor site.

- Upland was relocated to the Rubidoux site. The National PAMS Network Assessment observed that Upland was no longer consistent with a Type 4 site and recommended reclassification to Type 3. SCAQMD relocated the Upland PAMS site to Rubidoux as a Type 3 location where synergies can be created among the NATTS, NCore, and the STN programs.
- LAX Hastings and Pico Rivera remained unchanged.

Currently, manual VOC canisters are in operation at the Azusa, LAX Hastings, Rubidoux, Los Angeles (Main), and Santa Clarita air monitoring stations. During the intensive season from July 1 until September 30, VOC canisters are run every three hours for a period of twenty-four hours every 3rd day and a twenty-four hour sample is run every 6th day. During the non-intensive season from October 1 through June 30, twenty-four hour VOC canister samples are run every 6th day.

At Los Angeles (Main) and Santa Clarita air monitoring stations, during the intensive season from July 1 until September 30, carbonyl samples are run every three hours for a period of twenty-four hours every 3rd day and a twenty-four hour sample is run every 6th day. During the non-intensive season from October 1 through June 30, twenty-four hour carbonyl samples are run every 6th day.

Automated Gas Chromatography Flame Ionization Detector (GC\FID) VOC systems are in operation at the Pico Rivera and Burbank air monitoring stations. During the intensive sampling season from July 1 until September 30, the GC\FID is run to collect daily 3-hour samples and twenty-four hour VOC canisters are run every 6th day. Like the other PAMS sites, carbonyl samples are run every three hours with one additional twenty-four hour sample run every 6th day. During the non-intensive season from October 1 through June 30, the GC/FID is idle and twenty-four hour VOC canister samples are run every 6th day and twenty-four hour carbonyl samples are run every 6th day. Rubidoux is a collocated site for VOC canister sampling and Pico Rivera is a collocated site for VOC canister and carbonyl sampling.

During April 2010, a system audit was conducted by the EPA, which assessed the SCAQMD NATTS/PAMS programs. The audit found no major issues with the operation of the network but recommended implementation of blanking and low level concentration challenge samples for the NATTS and PAMS programs. Blanking was implemented in June, 2010 and low level challenge samples were implemented during October, 2010 and are completed annually.

The first SCAQMD upper air meteorological monitoring station was established at Los Angeles International Airport (LAX) in 1994. Subsequent upper air stations include Ontario International Airport (ONT) installed in 1996, Moreno Valley (MOV) installed in 2001 at the Moreno Valley Municipal Water Treatment Plant in Riverside County, Irvine (IRV) installed at the University of California Research and Extension Center in 2006, and Pacoima at Whiteman Airport (WHP) installed during May of 2007. The upper air stations use a combination of remote sensing and surface meteorological instrumentation, including the Scintec (formerly Radian/URS and Vaisala) LAP-3000 radar wind profiler

with a Radio Acoustic Sounding System (RASS), the Atmospheric Systems Corporation (formerly AeroVironment Inc.) mini Sodar acoustic wind profiler, and tower-mounted meteorological measurements of wind, pressure, temperature, relative humidity, solar radiation, and ultraviolet radiation. Due to the age of the LAX upper air instrumentation and costly component failures, SCAQMD has replaced the LAX radar wind profiler instrumentation with that from Whiteman Airport. Surface meteorology and mini-Sodar instruments are still operational at the Whiteman Airport upper air station.

The PAMS network monitoring objectives and requirements are summarized in Table 6, Table 23 and Figure 7 in Appendix A shows the distribution of the PAMS network.

TABLE 6. PAMS Network

			July 1 to September 30	tember 30	October 1 to June 30	to June 30	
Site Type	Date Established as PAMS	Site / AQS ID#	200	Carbonyl	VOC	Carbonyl	Additional Requirements
1	04/01/2004	LAX Hastings (replaced Hawthorne)	8 x 3 hr samples every 3 rd day and 1 x 24 hr sample every 6 th day	No Sampling	1 x 24 hr sample every 6 th day	No Sampling	
2	06/01/1995	Azusa	8×3 hr samples every 3^{rd} day and 1×24 hour sample every 6^{th} day	No Sampling	1 x 24 hr sample every 6 th day	No Sampling	No/NOx required
2	07/01/1997	Burbank	Continuous GC and 1 x 24 hr sample every 6 th day	8×3 hr samples every day and 1×24 hr sample every 6^{th} day	1 x 24 hr sample every 6 th day	1×24 hr sample every 6^{th} day	
2	06/01/2009	Los Angeles (Main)	8 x 3 hr samples every 3 rd Los Angeles (Main) day and 1 x 24 hour sample every 6 th day	8×3 hr samples every 3^{rd} day and 1×24 hr sample every 6^{th} day	1 x 24 hr sample every 6 th day	1×24 hr sample every 6^{th} day	Trace level CO required at one type 2 site.
2	08/01/2005	Pico Rivera #2	Continuous GC and 1 x 24 hr sample every 6 th day	8×3 hr samples every day and 1×24 hr sample every 6^{th} day	1 x 24 hr sample every 6 th day	1×24 hr sample every 6^{th} day	
3	6/06/5009	Rubidoux	8×3 hr samples every 3^{rd} day and 1×24 hour sample every 6^{th} day	No Sampling	1 x 24 hr sample every 6 th day	No Sampling	NOy required
3	05/01/2001	Santa Clarita	8×3 hr samples every 3^{rd} day and 1×24 hour sample every 6^{th} day	8 x 3 hr samples 3 rd day and 1 x 24 hr sample every 6 th day	1 x 24 hr sample every 6 th day	1 x 24 hr sample every 6 th day	

REDUCED REQUIREMENTS: Speciated VOC only required at type 2 and one other	Carbonyl only required in areas classified as serious	NO/NOx required only at type 2 NOy required at one site per PAMS area (type 1 or 3)
MONITORING REQUIREMENTS: One type 1 or type 3 site required per area	One type 2 site required per area	No type 4 required
MONITORING OBJECTIVES: 1 – Upwind and background characterization site	(type 1 or 3) 2 – Maximum O3 precursor emissions impact site or above 8 hr zone	3 – Maximum O3 concentration site 4 – Extreme downwind monitoring site

PM2.5

A network of 17 FRM samplers was first implemented in January 1999. On December 26, 1999, a second Coachella Valley PM2.5 sampling site was established in Palm Springs. On June 20, 2003, PM2.5 sampling began at the South Long Beach site. The final addition to the PM2.5 FRM network occurred in October 2005, at the new Mira Loma site. This brings the total number of PM2.5 FRM sampling sites to 20. The sites are depicted in Figure 8, Appendix A and the starting date of each sampler is listed in Table 7. In March 2012, a change was made relocating the collocated PM2.5 monitor from Indio to the Mira Loma (Van Buren) site. This change was made following approval from EPA. Collocated sampling sites include Rubidoux, Central Los Angeles, and Mira Loma (Van Buren). Of the collocated sites, all three are located at sites which exceed Federal NAAQS as shown in Figure and **Appendix** A. 2012 Air Quality Table (http://www.aqmd.gov/home/library/air-quality-data-studies/historical-data-by-year). Manual PM2.5 monitors are neighborhood scale and population exposure representing community wide air quality and multiple sites are listed as population exposure. Because all of SCAQMD is in non-attainment for PM2.5, most of the sites are in areas of poor air quality therefore multiple sites are listed as population exposure and high concentration. If a PM2.5 network modification were to be implemented for a site that was in exceedence of the PM2.5 NAAQS levels, SCAQMD would notify US EPA Region IX via written communication. Public notice of network modifications occurs as part of the annual network plan process which is stated in the annual network plan. All sites in the Network using FRM samplers are suitable for comparison against the annual PM2.5 NAAQS.

During April 2009, SCAQMD completed minor changes to the FRM monitoring schedule to enhance Federal Equivalent Method (FEM) Beta Attenuation Monitor (BAM) comparisons. On April, 16th, 2009 the Burbank and Mira Loma (Van Buren) FRM samplers changed to daily sampling from the 1-in-3 day schedule and the Azusa location changed from every day sampling to 1-in-3 day sampling. Daily design value sites are shown in Table 17a as the Burbank and Mira Loma sites. These sites meet the minimum daily monitoring requirement and exceed the minimum NCore 1 in 3 requirement at the Rubidoux and Los Angeles (Main) sites. The remaining sites adhere to the 1 in 3 schedule with the exception of Big Bear which was approved at the inception of the PM2.5 program as a 1 in 6 site. The Federal minimum monitoring requirements for PM2.5 are being met and/or exceeded by the SCAQMD PM2.5 monitoring network.

On January 15, 2013 EPA issued the Final Rule for the Review of National Ambient Air Quality Standards for Particulate Matter. EPA revised the minimum requirements for PM2.5 monitoring by requiring PM2.5 monitors to be sited near roads in certain urban areas. EPA requires the collocation of one PM2.5 monitor with a near road NO2 monitor in urban areas having populations of 1 million or more. EPA is specifying that required monitors in Core Based Statistical Areas (CBSA) of 2.5 million or more persons be operational by January 1, 2015.

One near road PM2.5 monitoring site is required in each of the Los Angeles-Long Beach-Santa Ana MSA\CBSA (Code 31100) and the Riverside-San Bernardino-Ontario MSA\CBSA (Code 40140) areas. Near road PM2.5 monitoring is to be implemented

concurrently with the near road NO2 monitoring. The plan for the near road network is detailed in the section titled, "Recent or Proposed Modifications to Network."

Continuous PM2.5 Met One BAMs were first deployed in fiscal year 2001–02. Seventeen monitors are now operating in the SCAB, two at Rubidoux (FEM & Non FEM BAM), and one each at Anaheim, Los Angeles, South Long Beach, Burbank, Mira Loma (Van Buren), and Banning sites. In January 2006, two additional samplers were added at Lake Elsinore and Glendora as part of the Children's Health Study. As proposed in the 2008 network plan, FEM BAM monitors were deployed during October 2008, at the Anaheim, Burbank, Long Beach (North), Los Angeles (Main), Mira Loma (Van Buren), Rubidoux, and South Long Beach sites. Relocated NON-FEM BAM samplers were installed at Reseda, Riverside Magnolia, Santa Clarita, Crestline, and Upland. A NON-FEM BAM was collocated with a FEM BAM at Rubidoux. An additional NON-FEM BAM sampler was deployed at Temecula during July, 2010. In 2011, all FEM BAMs have been reclassified from special purpose monitors to SLAMS under 40 CFR § 58.20. In 2013, SCAQMD conducted a PM2.5 Continuous Monitor Comparability Assessment in accordance with the PM NAAQS rule published on January 15th, 2013 (78 FR 3086). Specific to the provisions detailed in §58.10 (b)(13) and §58.11 (e), the assessment results indicate that all of the SCAQMD PM2.5 Continuous Monitors do not meet the criteria to be compared against the NAAQS. Thus, SCAQMD requested a waiver to exclude PM2.5 continuous monitor data from NAAQS comparison. Meanwhile, SCAQMD is conducting comparison studies of newer technology to determine their ability to meet the criteria to be compared against the NAAQS. At such time when the assessment indicates that the FEM monitors are within the acceptance criteria, then U.S. EPA will be notified of the results and the AQS parameters will be changed to indicate that the data will be eligible for comparison to the NAAQS upon U.S. EPA approval.

Coarse particulate matter measurements (PM10-2.5) are required at NCore sites. To meet this requirement SCAQMD measures this value utilizing the continuous BAM monitors at the Los Angeles (Main) and Rubidoux air monitoring sites. These monitors are shown in Table 4.

Where both 24 hour FRM PM2.5 samplers and FEM PM2.5 continuous analyzers are deployed together, they are sited as collocated for data comparison purposes if the FEM analyzer meets the acceptance criteria under 78 FR 3086.

TABLE 7. Manual PM_{2.5} FRM Monitoring Stations Assigned Site Numbers

Location	Site Code	ARB No.	AQS No.	Start Date	Schedule
Anaheim	ANAH	30178	060590007	01/03/99	Daily
Azusa	AZUS	70060	060370002	01/04/99	1-in-3
Big Bear	BGBR	36001	060718001	02/08/99	1-in-6
Burbank	BURK	70069	060371002	01/21/99	Daily
Compton	COMP	70112	060371302	11/08	1-in-3
Fontana	FONT	36197	060712002	01/03/99	1-in-3
Indio	INDI	33157	060652002	01/30/99	1-in-3
Long Beach (North) 1	LGBH	70072	060374002	01/03/99	Daily
Los Angeles "A" (Main St.)	CELA	70087	060371103	01/03/99	Daily
Los Angeles "B" (Main St.)	CELA	70087	060371103	01/06/99	1-in-6
Mira Loma (Van Buren) "A"	MRLM	33165	060658005	11/09/05	Daily
Mira Loma (Van Buren) "B"	MRLM	33165	060658005	03/08/12	1-in-6
Mission Viejo	MSVJ	30002	060592022	06/15/99	1-in-3
Ontario Fire Station	ONFS	36025	060710025	01/03/99	1-in-3
Palm Springs	PLSP	33137	060655001	12/26/99	1-in-3
Pasadena	PASA	70088	060372005	03/04/99	1-in-3
Pico Rivera #2	PICO	70185	060371602	09/12/05	1-in-3
Reseda	RESE	70074	060371201	01/24/99	1-in-3
Riverside	RIVM	33146	060651003	01/06/99	1-in-3
Rubidoux "A"	RIVR	33144	060658001	01/03/99	Daily
Rubidoux "B"	RIVR	33144	060658001	01/03/99	1-in-6
San Bernardino	SNBO	36203	060719004	01/03/99	1-in-3
South Long Beach	SLGB	70110	060374004	06/20/03	Daily

Some pollutants were discontinued at Long Beach (North) on 9/30/2013 due to termination of lease

FRM PM2.5 sampler remains the primary analyzer used for attainment purposes and continuous analyzers are designated as audit samplers unless the primary 24 hour FRM PM2.5 is offline then continuous FEM analyzer data can be substituted if the FEM analyzer meets the acceptance criteria under 78 FR 3086.

PM2.5 speciation sampling is also a part of the SCAQMD PM2.5 program. Collocated STN and one SCAQMD Met One SASS PM2.5 samplers were deployed in March 2001 at Rubidoux. An additional STN and collocated SCAQMD SASS samplers were deployed at Central Los Angeles in 2002. In 2003, SCAQMD SASS PM2.5 speciation samplers were installed at Fontana and Anaheim air monitoring sites. Analysis of the filters from the ambient network SASS samplers are being conducted at SCAQMD's laboratory. The STN filters are shipped to Research Triangle Institute (RTI) for analysis. This approach has the concurrence of CARB and EPA, Region IX.

On December 14, 2012 EPA revised NAAQS for PM2.5. As part of the revision EPA updated monitoring requirements for PM2.5 including the addition of monitoring near heavily traveled roads in large urban areas. Specifically, EPA is requiring the collocation of one PM2.5 monitor with a near road NO2 or CO monitor in urban areas having

populations of 1 million or more. EPA is specifying that monitors required in CBSAs of 2.5 million or more persons are to be operational by January 1, 2015. One near road PM2.5 monitoring site is required in each of the Los Angeles-Long Beach-Anaheim, CA MSA\CBSA (Code 31080) and the Riverside-San Bernardino-Ontario MSA\CBSA (Code 40140) areas. Sites are tentatively proposed on Route 60 in the City of Ontario and on Route 710 in the City of Long Beach. Both sites are to be operational by January 1, 2015.

National Air Toxics Trends Station (NATTS)

The NATTS program was developed to fulfill the need for long-term Hazardous Air Pollutant (HAP) monitoring data of consistent quality nationwide. SCAOMD has conducted several air toxics measurement campaigns in the past, which demonstrated the variety and spatial distribution of air toxics sources across SCAB. A single air toxics measurement site cannot reflect the levels and trends of air toxics throughout the SCAB. For this reason, two NATTS sites are used to characterize the SCAB's air toxics levels. The first site is a central urban core site in Los Angeles that reflects concentrations and trends due primarily to urban mobile source emissions. A second, more rural, inland site at Rubidoux captures the transport of pollutants from a variety of upwind mobile and industrial sources in the most populated areas of the air basin. NATTS monitoring began in February 2007 and continues at the Los Angeles (Main) and Rubidoux air monitoring sites. During April 2010, a system audit was conducted by the EPA, which assessed the SCAQMD NATTS program. The audit found no major issues with the operation of the network but recommended implementation of blanking and low level concentration challenge samples for the NATTS and PAMS programs. Blanking was implemented in June, 2010 and low level challenge samples were implemented during October, 2010 and completed annually.

NCore

NCore monitoring rules required that SCAQMD make NCore sites operational by January 1st, 2011. To meet this goal, SCAQMD installed trace level analyzers for CO, NOY and SO2 at the Rubidoux and Central Los Angeles sites. Continuous PM10 and PM2.5 BAM are utilized for PM10-PM2.5 measurements at both sites. Final calibrations were completed at the Rubidoux site January, 2011 and at the Central Los Angeles during May, 2011. Both the Los Angeles and Rubidoux sites are NATTS and PAMS monitoring locations.

Special Programs

Special monitoring programs are conducted for rule compliance purposes, to characterize the levels of toxic air contaminants and other criteria pollutants in sub-regional areas or communities in the SCAB, or to support modeling and planning efforts. The following is a list of special monitoring programs that were active during the past year. Note that this is being provided for informational purposes only.

MATES IV

The SCAB is a highly urbanized area home to about seventeen million people who own and operate about eleven million motor vehicles, and contains some of the highest concentrations of industrial and commercial operations in the country. In 1986, SCAQMD

conducted the first MATES study to determine the SCAB-wide risks associated with major airborne carcinogens. At the time, the state of technology was such that only ten known air toxic compounds could be analyzed. In 1998, a second MATES study (MATES II) was conducted; MATES II included a monitoring program of 40 known air toxic compounds, an updated emissions inventory of toxic air contaminants, and a modeling effort to characterize health risks from hazardous air pollutants. In April 2004, the SCAQMD conducted the third MATES study (MATES III) to assess the ambient levels of airborne compounds linked to adverse health effects in humans. And in June, 2012 SCAQMD began the MATES IV study.

The MATES IV Study included a monitoring program, an updated emissions inventory of toxic air contaminants, and a modeling effort to characterize risk across the Basin. The Micro-Scale component of the study will continue to focus on the carcinogenic risk from exposure to air toxics but will not estimate mortality or other health effects from particulate exposures. A focus of MATES IV is the inclusion of measurements of ultrafine particle concentrations. In addition, shorter-term measurements are being conducted at various locations to assess localized impacts of combustion sources. The focus of these measurements will be on assessing the exposures to ultrafine particles and black carbon very near sources such as airports, freeways, rail yards, busy intersections, and warehouse operations.

The goal of MATES IV is to enhance the spatial resolution of previous studies by characterizing the ambient concentration of selected toxic air compounds in communities with varying land-type usage, such as residential, industrial, and commercial, as well as gradients from source areas downwind to receptor areas.

For trend analysis the MATES IV study utilized the same ten fixed monitoring sites used in the MATES III study. These monitoring locations are the Anaheim, Burbank, Compton, Fontana, Huntington Park, North Long Beach, LA Main Street, Pico Rivera, Rubidoux, and West Long Beach monitoring sites. As of June 2013 monitoring at these ten fixed sites has been completed. MATES IV added Ultra Fine Particulate (UFP) and Black Carbon (BC) continuous measurements.

The Micro-Scale component to the MATES IV study utilizes mobile monitoring platforms deployed for short term measurements of selected compounds near sources such as airports, freeways, rail yards, busy intersections, and warehouse operations.

Fugitive Dust Study

In support of SCAQMD Rule 403 - Fugitive Dust, SSI PM10 samplers are deployed on an episodic basis upwind and downwind of potential sources as required under Rule 403. Since 2003, periodic sampling has been conducted around gravel quarries and other industries which seem to be producing large volumes of dust.

Hexavalent Chrome

The SCAQMD has an ongoing program to collect ambient hexavalent chromium samples in the vicinity of several chrome plating and cement production facilities located throughout the SCAB. Monitoring continues at Newport Beach, Riverside, and other locations throughout the SCAQMD jurisdiction.

College of the Desert

Because exceedances of the PM10 standard have been recorded at the Torres-Martinez (Indian Reservation) station, SCAQMD conducted an independent monitoring study to evaluate the spatial representativeness of such measurements. Continuous PM10 measurements were collected at "College of the Desert" in Mecca from December 2010 to May 2014. Currently the College of the Desert monitor is being relocated to a new Coachella Valley monitoring station located at Saul Martinez Elementary School in Mecca.

GERDAU-TAMCO

GERDAU North America acquired the TAMCO Rancho Cucamonga steel mini mill in October, 2010. In 2012 Environ Corp. was retained to perform an environmental audit and found discrepancies in reported emissions. Environ found that SOx emissions were not accurately reported prior to 2011, NOx emissions were not accurately being measured and Pb emissions may contribute to an exceedence of the NAAQS. SCAQMD conducted inspections of the facility to address issues and continues monitoring for Pb, Cr+6, and other metals at the facility. If results of the monitoring effort show TAMCO as a source of Pb that could contribute to an exceedence of the NAAQS, it will be added to the source impact Pb monitoring network.

Salton Sea Monitoring

On Sunday September 9, 2012, a strong thunderstorm over the Salton Sea caused odors to be released and transported to the northwest, across the Coachella Valley and through the Banning Pass into the SCAB. The odors also crossed through the mountain passes west of the Salton Sea and into the Temecula Valley. The following day, SCAQMD received over 235 complaints of sulfur and rotten egg type odors

As the Salton Sea recedes, the potential exists for more of these large-scale odor events to occur. SCAQMD has installed air monitors at Saul Martinez Elementary School and the Imperial Irrigation District's Torrez-Martinez site to monitor the type of expected nuisance pollutants which are released from the Salton Sea. The primary objective of this monitoring network is to place monitoring resources at a lakeside location where peak hydrogen sulfide concentrations are expected to occur. The monitoring sites will provide data that can be used to assess population exposures in case of odor events and for comparison to the state standard for hydrogen sulfide.

As the Salton Sea is projected to recede, these sites could be enhanced for monitoring the predicted particulate matter (PM) emissions from the Salton Sea area that may influence the South Coast Air Basin PM levels.

AllenCO

AllenCO is an oil field and gas production facility located in the City of Los Angeles surrounded by residences including low income housing units, F.D. Lanterman high school, and Mount Saint Mary's College. For several years SCAQMD Inspectors have

responded to numerous odor complaints from the local community and suspects Allen CO to be the source of these odors. In October 2013 the SCAQMD initiated monitoring at sites around the AllenCO facility. At Mt St Mary's College regularly scheduled VOC samples are collected, and continuous Non-Methane Hydrocarbon measurements are also being collected. On the roof of the low income housing building across the street from AllenCo, there is a remote controlled sampler capable of collecting a VOC grab sample should an odor complaint be called into the SCAQMD odor complaint line. In November 2013 AllenCo temporarily shut down operations to repair issues which it believes were the cause of the previous odor complaints.

Recent or Proposed Modifications to Network

Near Roadway NO2 Monitoring

On February 9, 2010, U.S. EPA promulgated new minimum monitoring requirements for the NO2 monitoring network in support of newly revised 1-hour NO2 NAAQS and the retained annual NAAQS. In the new monitoring requirements, State and Local air monitoring agencies are required to install near-road NO2 monitoring stations at locations where peak hourly NO2 concentrations are expected to occur within the near-road environment in larger urban areas. On March 7, 2013 EPA revised the new monitoring requirements from the 2010 NO2 NAAQS revision, delaying implementation of the first phase of the near road network to January 1, 2014 and the second phase to January 1, 2015. As part of the implementation, State and local air agencies are required to consider traffic volumes, fleet mix, roadway design, traffic congestion patterns, local terrain or topography, and meteorology in determining where a required near-road NO2 monitor should be placed. In addition to those required considerations, there are other factors that impact the selection and implementation of a near-road monitoring station including satisfying siting criteria, site logistics (e.g., gaining access to property and safety), and population exposure.

The near roadway grant guidance directed implementation of near road sites be conducted in phases. The first of the Phase I sites became operational on January 1, 2014 in Anaheim adjacent to the 5 freeway (FE AADT #3, 2013). The Second Phase I site is located in Ontario adjacent to Interstate 10/Interstate 15 (FE AADT #11, 2013) and is expected to be operational by July 1, 2014. Phase II sites are to be operational by January 1, 2015. Phase II sites are currently under consideration along Route 710 in Long Beach (FE AADT 22, 2014) and along Route 60 in Ontario (FE AADT #9, 2014). Each phase consists of one site selected from each of the Los Angeles – Long Beach – Anaheim (Metropolitan Statistical Area (MSA) and the Riverside – San Bernardino – Ontario MSAs.

The primary objective of the near-road NO2 network is to place monitoring resources on near-road locations where peak, ambient NO2 concentrations are expected to occur as a result of on-road mobile source emissions. Monitoring at such a location or locations within a particular urban area will provide data that can be used for comparison to the NAAQS and to assess population exposures for those who live, work, play, go to school, or commute within the near-roadway environment. Population density for SCAQMD is shown in Figure A. The near-road NO2 data will provide a clear means to determine whether or not the NAAQS is being met within the near-road environment throughout a particular urban area. Since near-road NO2

monitoring sites are to be placed at locations with expected peak NO2 concentrations, the target mobile sources and the roads they travel upon are ubiquitous throughout urban areas, these monitoring data may be said to represent the relative worst case population exposures that may be occurring in the near-road environment throughout an urban area over the averaging times of interest.

Minimum monitoring requirements are specified in 40 CFR 58 Appendix D. EPA requires state and local air agencies to operate one near-road NO2 monitor in each Core Based Statistical Area (CBSA) with a population of 500,000 or more persons. Further, those CBSAs with 2,500,000 or more persons, or those CBSAs with one or more roadway segments carrying traffic volumes of 250,000 or more vehicles (as measured by annual average daily traffic [AADT] counts), shall have two near-road NO2 monitors. The process of identifying minimum monitoring requirements is shown in Figure B.

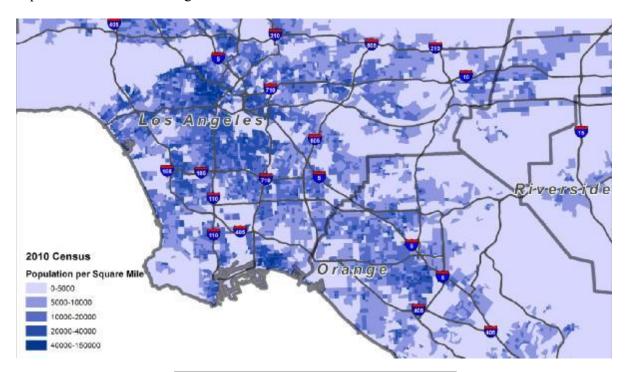
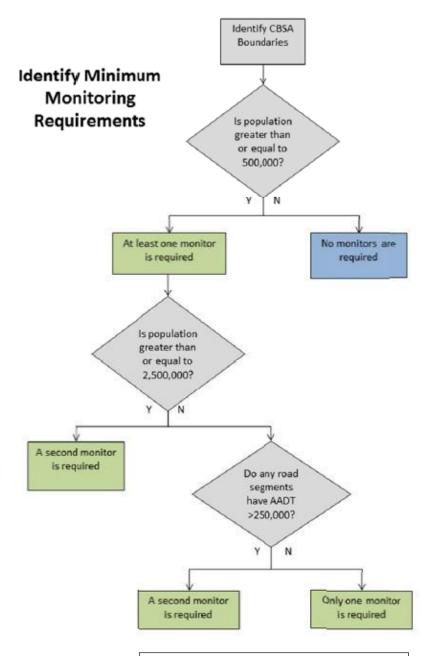
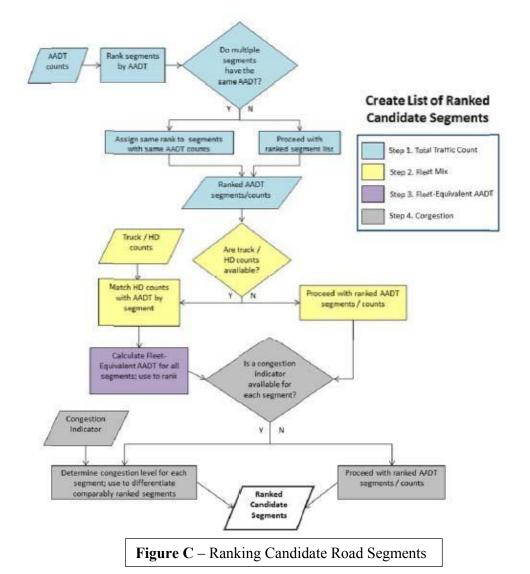



Figure A – SCAQMD Population Density


Figure B - Monitoring Requirements

The SCAQMD jurisdictional boundary encompasses two MSAs and two CBSAs whose boundaries and codes mirror those of the MSAs as defined by the U.S. Office of Management and Budget. The Los Angeles-Long Beach-Anaheim MSA\CBSA (Code 31080) has an estimated population of 13,131,431 and the Riverside-San Bernardino-Ontario MSA\CBSA (Code 40140) has an estimated population of 4,380,878 according to U.S. Census estimates for 2013. The minimum number of monitors required for near road monitoring is based on MSA\CBSA population and shown in Table 8.

TABLE 8. Minimum Number of Monitors Required Near Road NO2

CBSA	Population Estimate	Highest AADT Segment	Minimum Required Near Road NO2 Sites 2014	Minimum Required Near Road NO2 Sites 2015
31080	13,131,431	396,000	1	1
40140	4,380,878	245,300	1	1

The monitoring site selection process was in accordance with guidance published in the U.S. EPA Near Roadway NO2 Technical Assistance Document (TAD) (June, 2012). The process for ranking candidate road segments is outlined in Figure C.

25

The candidate road segment ranking process incorporated the following EPA TAD considerations:

 $FE\ AADT$ – A single metric to compare road segments, accounting for AADT and fleet mix (Heavy Duty Vehicles). The Fleet-Equivalent AADT value for each road segment is calculated by the following formula:

$$(FE) AADT = (AADT - HDc) + (HDm * HDc)$$

Where AADT is the total traffic volume count for a particular road segment, HDc is the total number of heavy-duty vehicles for a particular road segment, and HDm is a multiplier that represents the heavy-duty to light-duty NOx emission ratio for a particular road segment. An HDm of 17 was used instead of the default national average of 10 based on emissions inventories within the SCAQMD jurisdiction (Air Quality Management Plan, South Coast Air Quality Management District, 2012). The top 50 FE AADT segment candidates are calculated based on the latest (2012) California Department of Transportation AADT counts (http://trafficcounts.dot.ca.gov/) and are shown in Table 9.

TABLE 9. Top Fifty FE AADT Candidate Roadway Segments

4 754464 348000 25404 7.3 LA 23.56 605 59 705536 260000 27846 10.71 LA 9.612 605 66 691976 255000 27846 10.71 LA 13.569 605 3 680560 362000 27311 10.71 LA 13.569 605 45 680560 250000 25736 9.6 ORA 38.915 5 20 669504 250000 25344 9.6 ORA 36.258 5 50 669504 264000 25344 9.6 ORA 36.258 5 50 669504 264000 27030 12.24 SBD 1.747 605 50 669504 264000 27030 12.24 SBD 1.783 60 117 65678 222000 27030 12.24 SBD 1.783 60 79 646804 245300	Post mile Boute Description
705536 260000 27846 1071 LA 9.612 691976 255000 27311 10.71 LA 13.569 680560 362000 19910 5.5 ORA 34 678400 250000 26775 10.71 LA 17.407 678504 266000 25536 9.6 ORA 38.915 669504 266000 25536 9.6 ORA 38.915 669504 264000 25536 9.6 ORA 38.915 658608 222000 27050 12.24 SBD 4.58 653800 221000 27050 12.24 SBD 4.58 646804 245300 25094 10.23 SBD 9.36 64804 245300 25094 10.23 SBD 9.36 638048 254000 25044 9.2 ORA 3.28 638048 210000 25644 9.2 ORA 3.23 633	
691976 255000 27311 10.71 LA 13.569 680560 362000 19910 5.5 ORA 34 678400 250000 26775 10.71 LA 17.407 669568 292000 25836 9.6 ORA 38.915 669504 264000 25344 9.6 ORA 36.258 668704 264000 25344 9.6 ORA 36.258 668704 264000 27050 12.24 SBD 4.58 658780 221000 27050 12.24 SBD 4.58 648804 245300 25094 10.23 SBD 1.113 638048 254000 25044 9.2 ORA 5.28 638048 254000 25644 9.2 ORA 5.28 638048 254000 25644 9.2 ORA 5.38 638048 216000 25644 9.2 ORA 5.39 6334	
680560 362000 19910 5.5 ORA 34 678400 250000 26775 10.71 LA 17.407 678400 250000 25536 9.6 ORA 38.915 669968 292000 23623 8.09 LA 7.653 669504 264000 23344 9.6 ORA 36.258 656768 222000 27050 12.24 SBD 4.58 653800 221000 27050 12.24 SBD 4.58 646804 245300 25094 10.23 SBD 9.936 648804 245300 25094 10.23 SBD 11.711 638048 254000 26214 12.08 SBD 11.711 638424 257000 26214 12.08 LA 44.014 633488 216000 26693 12.08 LA 44.014 627616 27800 25671 11.94 SBD 27.24	
678400 250000 26775 10.71 LA 17.407 674576 266000 25536 9.6 ORA 38.915 669968 292000 23623 8.09 LA 7.653 669504 264000 25344 9.6 ORA 36.258 658704 264000 25344 9.6 ORA 36.258 658804 222000 27173 12.24 SBD 4.58 646804 245300 25094 10.23 SBD 9.36 646804 245300 25094 10.23 SBD 9.36 648804 245300 25094 10.23 SBD 9.36 638048 254000 26214 12.08 SBD 9.36 638048 257000 25614 12.08 SBD 5.258 635304 257000 26033 12.08 LA 44.014 625736 215000 2495 10.65 LA 20.428	
674576 266000 25536 9.6 ORA 38.915 669968 292000 23623 8.09 LA 7.653 669504 264000 25344 9.6 ORA 36.258 656768 222000 27173 12.24 SBD 4.58 658700 221000 27050 12.24 SBD 4.58 646804 245300 25094 10.23 SBD 9.36 638048 254000 26093 12.08 SBD 0.749 633488 216000 26093 12.08 LA 44.014 625736 215000 25671 11.94 SBD 24.24 625736 226000 24495 1.65 LA 20.428	
669968 292000 23623 8.09 LA 7.653 669504 264000 25344 9.6 ORA 36.258 656768 222000 27173 12.24 SBD 4.58 653800 221000 27050 12.24 SBD 2.366 646804 245300 25094 10.23 SBD 9.936 646804 245300 25094 10.23 SBD 11.132 638048 254000 24003 9.45 LA 11.11 636424 217000 26214 12.08 SBD 0 635304 257000 23644 9.2 ORA 5.28 633488 216000 26093 12.08 SBD 24.014 627616 278000 23644 9.2 ORA 44.014 623760 215000 24860 11 SBD 24.24 623760 226000 24495 1.6 A. 12.9 6	
669504 264000 25344 9.6 ORA 36.258 656768 222000 27173 12.24 SBD 4.58 658780 221000 27050 12.24 SBD 4.58 646804 245300 25094 10.23 SBD 9.36 646804 245300 25094 10.23 SBD 11.132 638048 254000 24003 9.45 LA 11.11 638048 254000 26214 12.08 SBD 0 635424 217000 26214 9.2 ORA 5.28 635304 257000 23644 9.2 ORA 5.28 62348 216000 26033 12.08 LA 44.014 623760 22600 24860 11 SBD 24.24 623760 230000 24860 11 82.24 12.97 619008 192000 2688 13.9 LA 12.97 619008	
656768 222000 27173 12.24 SBD 4.58 653800 221000 27050 12.24 SBD 2.366 646804 245300 25094 10.23 SBD 9.936 646804 245300 25094 10.23 SBD 11.132 638048 254000 24003 9.45 LA 11.71 635424 217000 26214 12.08 SBD 0 633488 216000 23644 9.2 ORA 5.28 623488 216000 26093 12.08 LA 44.014 625736 215000 25671 11.94 SBD 5.855 623760 226000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 2688 13.9 LA 12.97 613312 280000 20832 7.44 LA 42.1 <t< td=""><td></td></t<>	
653800 221000 27050 12.24 SBD 2.366 646804 245300 25094 10.23 SBD 9.936 646804 245300 25094 10.23 SBD 11.132 638048 254000 24003 9.45 LA 11.711 638424 217000 26214 12.08 SBD 0 635304 257000 23644 9.2 ORA 5.258 635304 257000 26093 12.08 LA 44.014 627616 278000 21851 7.86 LA 44.014 623760 226000 24860 11 SBD 5.424 623760 230000 24860 11 SBD 24.24 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 42.1 6	
646804 245300 25094 10.23 SBD 9.936 646804 245300 25094 10.23 SBD 11.132 638048 254000 24003 9.45 LA 11.111 635424 217000 26214 12.08 SBD 0 633488 216000 23644 9.2 ORA 5.28 633488 216000 26093 12.08 LA 44.014 627616 278000 21851 7.86 LA 44.014 625736 215000 25671 11.94 SBD 5.855 623760 226000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 619312 280000 20832 7.44 LA 36.358 608520 24380 2775 9.35 ORA 42.1	
646804 245300 25094 10.23 SBD 11.132 638048 254000 24003 9.45 LA 11.711 636424 217000 26214 12.08 SBD 0 635304 257000 23644 9.2 ORA 5.28 633488 216000 26093 12.08 LA 44.014 627616 278000 21851 7.86 LA 44.014 623760 226000 25671 11.94 SBD 5.855 623760 226000 24860 11 SBD 24.24 621920 230000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 24380 22795 9.35 ORA 42.1	
638048 254000 24003 9.45 LA 11.711 636424 217000 26214 12.08 SBD 0 633488 216000 23644 9.2 ORA 5.258 623488 216000 26093 12.08 LA 29.392 625736 278000 21851 7.86 LA 44.014 625736 215000 25671 11.94 SBD 5.855 623760 226000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 24380 2775 ORA 42.1	
636424 217000 26214 12.08 SBD 0 635304 257000 23644 9.2 ORA 5.258 633488 216000 26093 12.08 LA 29.392 627616 278000 21851 7.86 LA 44.014 623760 226000 24860 11 SBD 5.855 623760 226000 24860 11 SBD 24.24 621920 230000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 24380 22795 9.35 ORA 42.1	
635304 257000 23644 9.2 ORA 5.258 633488 216000 26093 12.08 LA 29.392 627616 278000 21851 7.86 LA 44.014 625736 215000 25671 11.94 SBD 5.855 623760 226000 24860 11 SBD 24.24 621920 230000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
633488 216000 26093 12.08 LA 29.392 627616 278000 21851 7.86 LA 44.014 623760 215000 25671 11.94 SBD 5.855 623760 226000 24860 11 SBD 24.24 621920 230000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
627616 278000 21851 7.86 LA 44.014 625736 215000 25671 11.94 SBD 5.855 623760 226000 24860 11 SBD 24.24 621920 230000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
625736 215000 25671 11.94 SBD 5.855 623760 226000 24860 11 SBD 24.24 621920 230000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
623760 226000 24860 11 SBD 24.24 621920 230000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
621920 230000 24495 10.65 LA 20.428 620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
620400 330000 18150 5.5 ORA 30.263 619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
619008 192000 26688 13.9 LA 12.97 613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
613312 280000 20832 7.44 LA 36.358 608520 243800 22795 9.35 ORA 42.1	
608520 243800 22795 9.35 ORA 42.1	
51 605296 264000 21331 8.08 ORA 2.615 91	

TABLE 9 (continued). Top Fifty FE AADT Candidate Roadway Segments

Description	UE			. 118	405	710	405	19		E. 57 NORTH	. 91					NUE				505		. 405			
	MOUNTAIN VIEW AVENUE	LONG BEACH, DEL AMO	LONG BEACH, CHERRY	LOS ANGELES, JCT. RTE.	LOS ANGELES, JCT. RTE. 405	LONG BEACH, JCT. RTE. 710	LONG BEACH, JCT. RTE. 405	BELLFLOWER, JCT. RTE. 19	FULLERTON, HARBOR	DIAMOND BAR, JCT. RTE.	LOS ANGELES, JCT. RTE.	CERRITOS, JCT. RTE. 91	DUARTE, JCT. RTE. 605,	ENCINO AVENUE	JCT. RTE. 22 EAST,	FONTANA, CHERRY AVENUE	JCT. RTE. 55 SOUTH	ANAHEIM, JCT. RTE. 91,	BALDWIN PARK, JCT. 10	SEAL BEACH, JCT. RTE. 605	PERALTA, JCT. RTE. 90	LOS ANGELES, JCT. RTE.	JCT. RTE. 15	ALABAMA STREET OC	LYNWOOD, JCT. RTE. 105
Route	10	710	91	5	101	91	710	91	91	09	110	605	210	101	405	10	91	57	605	405	91	5	09	10	710
Post mile	27.296	10.823	13.094	39.361	17.17	11.681	9.41	14.618	3.258	25.464	9.87	5.046	36.41	19.99	20.751	13.169	9.187	15.6	20.189	24.044	11.54	41.597	0.491	29.313	15.692
County	SBD	LA	LA	LA	LA	LA	LA	LA	ORA	LA	LA	LA	LA	LA	ORA	SBD	ORA	ORA	LA	ORA	ORA	LA	RIV	SBD	LA
Total Truck %	13.2	14.22	7.73	7.77	5.45	7.73	14.4	7.73	7.1	98.6	7.53	5.83	7.06	5.45	3	10.29	4.5	6.14	8.6	3	S	6.13	15.7	12	8.73
Total Trucks (HD)	25608	26165	20716	20746	17222	20407	25632	20253	19383	22086	19578	16907	18568	16296	11325	21609	14445	17069	20972	11100	15150	16858	24335	22236	19643
AADT Total	194000	184000	268000	267000	316000	264000	178000	262000	273000	224000	260000	290000	263000	299000	377500	210000	321000	278000	214000	370000	303000	275000	155000	185300	225000
FE	603728	602640	599456	598936	591552	590512	588112	586048	583128	577376	573248	560512	880099	559736	558700	555744	552120	551104	549552	547600	545400	544728	544360	541076	539288
AADT Rank	161	175	40	43	8	52	179	55	38	112	09	22	54	16	1	139	7	32	128	2	14	36	200	174	1111
HD Rank	13	6	36	35	61	38	12	40	47	27	44	65	51	74	107	29	96	63	32	108	90	67	21	26	43
FE ADDT Rank	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	4	45	46	47	48	49	50

The process of ranking the roadway segments began with creating a scoring matrix incorporating EPA TAD considerations. The scoring matrix was used as a tool to determine the most suitable location for monitoring by incorporating traffic data and quantifying station siting considerations. FE AADT was weighted a factor of five due to the major role traffic influences near roadway monitoring. Other important factors such as roadway design, distance from roadway, meteorology, roadside structures and terrain were taken into consideration and weighted a factor of one each and are defined as follows:

Roadway Design – Considers monitor placement and can affect pollutant transport and dispersion. The most desirable attributes include a monitoring location at grade with the surrounding terrain and roadway. The least desirable attributes include deep cut-sections significantly below grade or significantly above grade.

Distance from Roadway - Per 40 CFR Part 58 Appendix E: the site should be "As near as practicable to the outside nearest edge of the traffic lanes of the target road segment; but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment." The TAD recommends the target distance for near-road NO2 monitor probes be within 20 meters of the target road whenever possible.

Meteorology— Can affect pollution transport and dispersion. The most desirable location is relative downwind locations — winds from road to monitor. The least desirable locations are sites upwind of the target road.

Roadside Structures – Considers monitor placement and can affect pollutant transport and dispersion. The most desirable monitoring location will have no barriers present other than low (< 2m in height) safety barriers or guard rails. The least desirable attributes include the presence of sound walls, mature vegetation (high and thick) or obstructive buildings.

Terrain – Can affect pollutant dispersion and local atmospheric stability. The most desirable terrain is flat or gentle terrain, within a valley, or along road grade. The least desirable terrain is along mountain ridges or peaks, hillsides, or other naturally windswept areas.

A scale normalized to 5 was used to rank each candidate segment; the scoring matrix is shown as Table 10.

TABLE 10. Candidate Segment Scoring Matrix

Score	5	3		1	0	
FE AADT (Weighted 5x)	Traffic count of the highest ranked FE AADT	Normalized to the highest ranked FE AADT		zed to the ranked FE	N/A	
Roadway Design	At same elevation	Slightly higher elevation	Below g Under or On bridg	verpass /	Design prevent or accurate representation of roadway.	
Distance from Roadway	Less than or equal to 20 m	Normalized distance from 20 m to 50 m	50 m fro roadway		>50 m	
Meteorology (predominant wind direction)	Downwind	Parallel	Upwind		N/A	
Roadside Structures	No barriers (< 2 m)	Some obstruction (small sound barriers sparse low vegetation)	,	ostruction und walls, s).	Completely blo	cked
Terrain	Flat / mildly sloping	Uneven	Mountai Canyons	· ·	Terrain prevent or accurate representation of roadway	
				Weighting	Values	
				FE AADT		5
				Roadway I		1
					om Roadway	1
				Meteorolog Roadside S		1
				Terrain	Structures	1
L				Terrain		1

The top FE AADT sites were surveyed and ranked according to the scoring matrix. Some sites had several locations within the road segment to consider and each location was scored individually as a sub-site. The results are shown for the Los Angeles-Long Beach-Anaheim MSA\CBSA (Code 31080) and the Riverside-San Bernardino-Ontario MSA\CBSA (Code 40140) in Tables 11 and 12.

TABLE 11. Los Angeles-Long Beach-Santa Ana MSA\CBSA

			Route 5/605		Route	Roi	Route					Route		Route								State College	Route
Route 57/60	19//		Santa Fe		605/72	5/22	5/22/57	Rout	Route 605/60 City of	City	Jo	5/Lincoln		605/105	_	Route 5/Katella	Katell		ute 60	Route 60/605 City	City	Blvd./Route	710/91
100	Diamond Bar	-	Springs		Whittier	Ora	Orange		Industry	2		Anaheim		Norwalk	¥	Anaheim	eim		of In	of Industry		91 Anaheim	Long Beach
	_		2		3	7	‡		5			9		7		8				13		15	22
4	754,464		705,536		691,976	680,560	,560		678,400	0		674,576	-	896,699	8	669,504	504		63	638,048		635,304	619,008
	15	_	-	\vdash	2	4	41		S			14		24		16	٠			22		23	9
	25,404		27,846		27,311	19,	016,61		26,775	5		25,536	98	23,623	3	25,344	44		24	24,003		23,644	26,668
	4		69		99	,	3		72			45		20		90	(29		64	165
	348,000	. 1	260,000	H	255,000	362,	362,000		250,000	0		266,000	\vdash	292,000	0	264,000	000		25	254,000		257,000	192,000
1A	1B 1	1C 2	2A 2B	B 3A	4 3B	4A	4B	5A	5B	2C	SD	6A	(B)	7A 7	7B 8	8A 8B	3 8C	13A	13B	13C	13D	15A	22A
Ľ	5.00 5.	.00 4.	.68 4.6	58 4.5	5.00 5.00 5.00 4.68 4.68 4.59 4.59 4.51 4.51	4.51		4.50	4.50	4.50	4.50	4.47 4.47 4.44	1.47 4		4.44 4.	4.44 4.4	4.44 4.44 4.23	4 4.23	3 4.23	4.23	4.23	4.21	4.10
4.5	4.0 5	5.0 4	4.5 4.	4.5 3.0	0 5.0	4.0	5.0	5.0	2.0	2.0	4.0	4.0	5.0	1.0 2	2.0	3.0 3.0	0.1	5.0	2.0	2.0	4.0	1.0	5.0
	5.0 5	5.0 5	5.0 2.5	5 4.0	0 4.0	1.2	3.6	4.0	3.6	2.6	3.3	3.7	5.0	2.2 0	0.0	0.0 3.2	2 2.5	4.0	3.6	2.6	3.3	3.2	5.0
	5.0	1.0	1.0 1.0	0.8 0.0	0 3.5	1.0	3.5	1.0	2.5	5.0	3.0	5.0	5.0	3.0 4	4.0 4.	4.0 4.0	0.4.0	1.0	2.5	5.0	3.0	4.0	5.0
4.0	4.0	1.0	3.0 5.0	0.8 0.0	0 4.0	4.0	4.0	4.0	1.0	1.0	1.0	5.0	5.0	1.0	1.0	2.5 2.5	5 2.5	4.0	1.0	1.0	1.0	1.0	5.0
3.5	4.0 4	4.0 4	4.0 3.0	0.7	0.5 0	4.0	5.0	5.0	2.0	2.0	3.5	3.0	5.0	4.0 4	4.0	3.0 3.0	3.0	5.0	2.0	2.0	3.5	3.0	5.0
7	4.70 4.70 4.10		9.8 9.5	3.7	4.09 3.94 3.79 4.44 3.68 4.36	3.68		4.15	3.36	3.51	3.73	4.31	4.74 3.34	.34 3.	3.32 3.47	47 3.79	3.5	3.52 4.01	3.22	3.38	3.60	3.32	4.55
2	2	8	6	11 12	2 4	14	9	7	20	17	13	9	1	21 2	22 1	18 12	91 7	10	23	16	91	22	3

TABLE 12. Riverside-San Bernardino-Ontario MSA/CBSA

							Route	Route 60 LA/SB		
	Route 60/83		Route 60/Central	ıtral	Route 10/15	10/15	10/Etiwanda	County Line	Route 60/71	Grove Ave/Route
Location	Ontario		Chino		Ontario	ario	Ontario	Chino	Pomona	60 Ontario
FE AADT Rank	6		10			1	12	14	16	18
FEAADT	656,768	Ŷ	653,800		646,804	804	646,804	636,424	633,488	625,736
HD Rank	3		4		17	7	18	8	10	11
HD	27,173	,	27,050		25,094)94	25,094	26,214	26,093	25,671
AADT Rank	117		118		82	8	62	120	121	125
AADT	222,000	2	221,000		245,300	300	245,300	217,000	216,000	215,000
Site	9A	10A	10B	10C	11A	11B	12A	14A	16A	18A
FE AADT Score	4.35	4.33	4.33	4.33	4.29	4.29	4.29	4.22	4.20	4.15
Roadway Design	3.0	2.0	2.0	2.0	4.0	3.0	5.0	1.0	1.0	3.0
Distance from Roadway	2.0	3.3	3.3	4.0	0.0	1.7	5.0	2.6	4.0	4.5
Meteorology	3.5	2.5	2.5	3.0	3.0	4.0	5.0	3.0	3.0	4.0
Roadside Structures	2.5	3.0	4.0	3.0	5.0	1.0	5.0	3.0	1.0	4.0
Terrain	3.5	2.0	4.0	4.0	4.0	2.0	5.0	3.0	3.0	4.0
Sum (Out of 50)	3.63	3.45	3.75	3.77	3.74	3.31	4.64	3.37	3.30	4.03
Ranking	9	7	4	3	2	6	1	8	10	2

Level of Service (congestion) data is considered to differentiate between two comparatively ranked segments as part of the site selection process. Tables 13, 14 and 15 show the top congested freeways in the Los Angeles, Orange, and the Riverside-San Bernardino-Ontario MSA\CBSA for 2012. As reported by the California Department of Transportation (http://www.dot.ca.gov/hq/traffops/sysmgtpl/MPR/index.htm).

TABLE 13. Top Congested Freeways Los Angeles County

Route	County	Vehicle Hour at 60 r	•	Differe (2012 - :		Rar	ık
		2011	2012	Absolute	Percent	2011	2012
1.5	Los Angeles	14,860,558	15,720,370	859,812	6%	ı	1
I 405	Los Angeles	11,519,515	12,627,567	1,108,053	10%	2	2
SR-101	Los Angeles	9,918,324	10,567,013	648,689	7%	3	3
SR-60	Los Angeles	9,428,050	10,102,098	674.047	7%	4	4
I 10	Los Angeles	7,082,866	8,258,162	1,175,296	17%	5	5
1 210	Los Angeles	6,962,310	7,933,128	970,818	14%	6	6
1-110	Los Angeles	5,478,239	5,935,385	457,146	8%	7	7
1-605	Los Angeles	4,156,413	4,476,068	319,655	8%	8	8
1-105	Los Angeles	3,796,836	3,413,272	-383.564	-10%	9	9
SR 91	Los Angeles	3,154,442	3,385,568	231,126	7%	10	10
TOTALS		76,357,552	82,418,630	6,061,078	7.9%		

TABLE 14. Top Congested Freeways Orange County

Route	County	Vehicle Hot at 60	urs of Delay mph	Differe (2012 - :		Ra	nk
		2011	2012	Absolute	Percent	2011	2012
I 5	Orange	7,728,731	8,098,821	370,087	5%	1	1
I-405	Orange	5,436,501	6,246,872	810,371	15%	2	2
SR-91	Orange	3,657,120	3,235,483	-421,637	-12%	3	3
SR 57	Orange	2,165,512	3,162,837	997,325	46%	5	4
SR-55	Orange	2,356,787	2,735,502	378,715	16%	4	5
SR 22	Orange	1,069,336	1,089,160	19,825	2%	6	6
SR 74	Orange	0	570,927	570,927			7
SR 73	Orange	358,253	410,764	52,511	15%	7	к
SR 241	Orange	202,343	259,877	57,533	28%	8	9
I 605	Orange	174,457	198,783	24,325	14%	9	10
TOTALS		23,149,042	26,009,023	2,859,981	12.4%		

TABLE 15. Top Congested Freeways Riverside & San Bernardino Counties

Route	County	Vehicle Hou at 60	•	Differe (2012 -		Ra	nk
		2011	2012	Absolute	Percent	2011	2012
SR 91	Riverside	3,595,668	3,967,746	372,078	10%	L	1
I 10	San Bernardino	2,426,202	2,107,459	-318,744	-13%	2	2
1-215	Riverside	2,025,724	1,870,771	-154,953	-8%	3	3
I 15	Riverside	1,602,800	1,633,739	30,938	2%	4	4
SR 60	San Bernardino	1,297,909	1,554,445	256,536	20%	5	5
I 15	San Bernardino	1,119,114	1,319,966	200,852	18%	6	6
SR-60	Riverside	888,458	861,892	-26,565	-3%	7	7
I 215	San Bernardino	376,842	582,028	205,186	54%	9	8
1 210	San Bernardino	563,406	503,600	59,806	11%	8	9
1 10	Riverside	113,341	155,993	42,652	38%	11	10
TOTALS		14,009,462	14,557,637	548,175	4%		

On June 19, 2014, an Annual Network Plan Workshop was conducted at SCAQMD's Diamond Bar office. Information regarding the workshop can be found at the SCAQMD website. SCAQMD staff presented and held a discussion on SCAQMD's progress and announced the first two sites at the Anaheim and the Ontario near road monitoring locations and proposed additional sites at Route 710 in Long Beach and Route 60 in Ontario. Written comments were received in 2013 by the National Defense Resources Council (NRDC) regarding support for placing a site along the 710 freeway for a Los Angeles-Long Beach-Anaheim CBSA near road monitoring location.

Sites are selected based on their ranking in the scoring matrix however there are other considerations involved in the site selection process. These considerations include:

Safety - Near-road monitoring sites must be accessible to station operators in a safe and legal manner, and not pose safety hazards to drivers, pedestrians, or nearby residents. Safety hazards to monitoring site operators include factors which inhibit the safe entrance to or egress from a site and factors that could allow vehicles to encroach upon and damage the site infrastructure.

Accessibility – ability to access the desired location from the property owner or ability to obtain a right of way permit.

Infrastructure – availability of power and data connection at the site.

The projected timeline for installation and operation of the near roadway monitoring sites is as follows:

<u>Date</u> <u>Activity</u>

January 1, 2014 NO2 Monitoring began at Anaheim near road monitoring

site.

May 1, 2014	Identify location of phase 2 monitoring sites; considering required factors prescribed in 40 CFR Part 58 Appendix D and Near Roadway NO2 Technical Assistance Document along with logistics and availability of space at candidate sites.
June 19, 2014	Annual Network Plan Workshop to discuss the Draft 2014 Annual Network Plan and to discuss proposed locations along Route 710 in Long Beach and Route 60 in Ontario.
July 1, 2014	Begin NO2 monitoring at Ontario Etiwanda near road monitoring site.
July, 2014	Obtain permission/permits from respective landowners for additional proposed sites. Estimated June, 2014.
August, 2014	Survey site with construction manager.
	Purchase equipment for monitoring sites. Estimated three months from receipt of grant award.
November, 2014	Site preparation completion – installation of building, foundation, fencing, barriers, meteorological tower, utility and phone lines at proposed sites.
December, 2014	Installation of CO at Ontario Etiwanda and Anaheim near road sites, installation of NO2 and PM2.5 at proposed Route 710 and Route 60 locations, conditioning, calibration and official startup date by January 1, 2015.

Van Nuys Pb Monitoring Site

On November 12, 2008, the EPA issued final revisions to the NAAQS for Pb. Network design requirements included monitoring for sources of Pb (source oriented monitoring) and urban Pb monitoring (non-source oriented). To meet this requirement, a source oriented site was established on January 1, 2010 at the Van Nuys Airport. The final rule for Pb went into effect on January 26, 2011. In the final rule the Van Nuys Airport was no longer included on the list of airports where Pb monitoring was required, and the most recent emissions inventory showed Pb emissions less than 1 ton per year. The landowner advised SCAQMD the lease would not be renewed at the end of the three year contract period. Data review from the Van Nuys Airport Pb site showed no exceedances of the three month rolling average during the monitoring period. In consultation EPA the site was discontinued on June 4, 2013 based upon conditions cited in 40 CFR 58 Appendix D 4.5. Written confirmation of site closure to EPA will follow separately from ANP.

Sulfate Monitoring

SCAQMD has been monitoring TSP sulfate data at the Azusa, Fontana, Pasadena, and West Los Angeles monitoring since the inception of the monitoring sites. In 2003, ARB revised the sulfates monitoring method and standard by deleting the TSP sulfates method, ARB method MLD 033, and replaced it with the existing ARB method and creating a new standard for PM10 sulfates, ARB method MLD 007. ARB conducted a comparison of SCAQMD PM10 and TSP sulfate data for 1999 though 2010 and found good correlation between the two methods. TSP sulfate data was reviewed in consultation with EPA and ARB who determined the need did not exist for continued TSP sulfate monitoring and a waiver was not necessary since the rule no longer exists. TSP sulfate monitors were removed from the Pasadena and West LA monitoring sites early 2013. The TSP sulfate monitors were removed from the Azusa and Fontana sites in June, 2013.

Crestline

SCAQMD has been operating the Crestline site since 1973. The deteriorating state of the shelter along with compromises made to the siting criteria due to obstructions has made it a candidate for site improvement. As part of regular air monitoring station maintenance, a new station shelter has been outfitted to replace the existing trailer during October, 2014.

West LA

SCAQMD has been operating the West LA site since 1983. The deteriorating state of the shelter along with compromises made to the siting criteria due to obstructions has made it a candidate for site improvement. As part of regular air monitoring station maintenance, a new station shelter has been outfitted to replace the existing trailer during FY 2014-15.

Riverside Magnolia

SCAQMD has been operating the Riverside Magnolia site since 1972. The deteriorating state of the building along with compromises made to the siting criteria due to obstructions has made it a candidate for site relocation. SCAQMD in consultation with EPA Region IX has located a candidate site for relocation within one mile of the current location. Once established, a data comparison is proposed to place to assess that data is representative for the area.

South Long Beach

SCAQMD has been operating the South Long Beach station as part of the ambient airmonitoring network. Recent construction of the buildings adjacent to our air monitoring equipment compromises the siting criteria. During the FY 2014-15 a data comparison between a more centralized monitoring location in Long Beach will be undertaken. If comparison of data between the two locations demonstrates some comparability, or if the metropolitan site shows consistently higher levels of PM, the South Long Beach site may be relocated in consultation with EPA Region IX.

Long Beach (Hudson)

The Long Beach (Hudson) site was added as part of the MATES IV study. As part of the action to provide enhanced coverage, the Long Beach (Hudson) site will remain in operation collecting Ozone, Carbon Monoxide, Nitrogen Dioxide, Sulfur Dioxide, and particulate data to represent the Long Beach area.

Long Beach (North)

At the request of the owner, the Long Beach (North) site lease was terminated on September 30, 2013. As a result some pollutants were discontinued while a replacement site is sought. Consideration is being given to consolidation with nearby sites to better represent the Long Beach area and will be addressed in the 5 year network assessment.

Minimum Monitoring Requirements

The SCAQMD jurisdictional boundary encompasses two MSAs and two CBSAs whose boundaries and codes mirror those of the MSAs as defined by the U.S. Office of Management and Budget. Los Angeles-Long Beach-Anaheim MSA\CBSA (Code 31080) has an estimated population of 13,131,431 and the Riverside-San Bernardino-Ontario MSA\CBSA (Code 40140) has an estimated population of 4,380,878 according to U.S. Census estimates for 2013. The minimum number of monitors for each pollutant is based on MSA population as described in 40 CFR § 58 Appendix D. The SCAQMD is a Primary Quality Assurance Organization (PQAO) and the network exceeds the minimum monitoring requirements for all criteria pollutants. Details are provided below.

Table 16 Minimum Monitoring Requirements for Ozone.

(Note: Refer to section 4.1 and Table D-2 of Appendix D of 40 CFR Part 58.)

MSA	Counties	Population and Census Year	8-hr Design Value (ppb) DV, Years	Design Value Site Monitors (name AQS ID0 Required	Monitors Required	Monitors Active	Monitors Needed
30180	Los Angeles Orange	13,131,431 2013	99, 2011-2013	Santa Clarita 060376012	4	17	0
40140	San Bernardino Riverside	4,380,878 2013	107, 2011-2013	Redlands 060714003	3	13	0

¹DV Years – The three years over which the design value was calculated. Monitors required for SIP or Maintenance Plan: 30

Table 17a Minimum Monitoring Requirements for PM2.5 SLAMS (FRM/FEM/ARM) (Note: Refer to sections 4.71, 4.72, and Table D-5 of Appendix D of 40 CFR Part 58.)

ı		1	
	# Additional SLAMS needed	0	0
	# Active SLAMS Monitors	11	6
	# Required SLAMS Monitors	3	3
	Daily Design Value site (name AQS ID)	Los Angeles 060371103	Mira Loma 060658005
1.00.11	Daily Design Value [ug/m3], DV & years	30.8, 2011- 2013	36.6, 2011- 2013
SIN D 01 10 CL	Annual Design Value Site (Name, AQS ID)	Burbank 060371002	Mira Loma 060658005
addition of a	Annual Design Value [ug/m3], DV & Years	12.20, 2011-2013	14.86, 2011-2013
1, 1., 2, and 1 and	Population and Census Year	13,131,431 2013	4,380,878 2013
(1906) 1301 to 30000 1.71, 1.72, and 10010 D 3 01 17 ponding D 31 19 01 19 01	Counties	Los Angeles Orange	San Bernardino Riverside
(11000.1)	MSA	30180	40140

¹DV Years – The three years over which the design value was calculated. Monitors required for SIP or Maintenance Plan: 20

Table 17b Minimum Monitoring Requirements for Continuous PM2.5 Monitors (FEM and Non-FEM)

(FEM/ARM and non-FEM see 40 CFR 58 Appendix D Section 4.72.)

					,				
	Counties	Population and Census Year	Annual Design Value [ug/m3], DV & Years	Annual Design Value Site (Name, AQS ID)	Daily Design Value [ug/m3], DV & years	Daily Design Value site (name AQS ID)	# Required Continuous Monitors	# Active Continuous Monitors	# Additional Continuous needed
	30180 Los Angeles Orange	13,131,431 2013	19.73, 2011-2013	Los Angeles 060371103	45.9, 2011-2013	Los Angeles 060371103	2	4-FEM 3-Non FEM	0
10140	San Bernardino Riverside	4,380,878 2013	20.47, 2011-2013	Mira Loma 060658005	43.0, 2011-2013	Mira Loma 060658005	2	2-FEM 6-Non FEM	0
Į.									

¹DV Years – The three years over which the design value was calculated. Monitors required for SIP or Maintenance Plan: 15

^{*} Currently all active continuous monitors do not meet acceptance criteria under 78 FR 3086 and is requested to not be compared to the NAAQS.

Table 17c Minimum Monitoring Requirements for Speciated PM2.5 Monitors (Note: Refer to sections 4.74 of Appendix D of 40 CFR Part 58.)

	Monitors Needed	0	0
	Monitors Active	2	2
(.0.	Monitors Required ¹	1	1
, 10 CI 17 MIL 1	Population and Census Year	13,131,431 2013	4,380,878 2013
or vibraddy i	Counties	Los Angeles Orange	San Bernardino Riverside
(note: recen to see note:) of the point of the contract of th	MSA	30180	40140

¹Sites designated as part of the PM_{2.5} Speciation Trends Network (STN) Monitors required for SIP or Maintenance Plan: 4

Table 18 Minimum Monitoring Requirements for PM10

(Note: Refer to section 4.6 and Table D-4 of Appendix D of 40 CFR Part 58.)

0	12	6-10 High Conc	Mira Loma 060658005	1471	4,380,878 2013	San Bernardino Riverside	40140
0	6	4-8 Med Conc	Anaheim 060590007	22	13,131,431 2013	Los Angeles Orange	30180
# Additional Monitors Needed	# Active Monitors	# Required Monitors	Max Concentration site (name AQS ID)	2013 Max Concentration [ug/m3]	Population and Census Year	Counties	MSA

Monitors required for SIP or Maintenance Plan: 21
¹Excluding high concentration at Indio (159 ug/m3, on 8/23/2013.)

Table 19 Minimum Monitoring Requirements for NO2 (Note: Refer to section 4.3 of Annendix D of 40 CFR Part 58.)

	#Additional Area wide Monitors Needed	0	0
	#Active Area Wide Monitors	91	6
	#Required Area Wide Monitors	1	1
	#Additional Near Road Monitors Needed ⁴	0	0
1.98.)	#Active Near Road Monitors ³	1	1
1 40 OFR Fal	# Required Near Road Monitors ²	1	1
Appendix D C	Max AADT Counts (2012) ¹	396,000, 2012	245,300, 2012
(Note: Nelei to section 4.3 of Appendix D of 40 CFR Part 38.)	Population and Census Year	13,131,431 2013	4,380,878 2013
(NOIC: RE	CBSA	30180	40140

Max AADT Counts - 2012 is the latest data available from CA DOT

²Two required beginning January 1, 2014.
³Two required sites to be active by January 1, 2014. See schedule in Recent or Proposed Changes to Network, Near Road

Monitoring.

⁴One additional site per CBSA to be active by January 1, 2015. See schedule in Recent or Proposed Changes to Network, Near

Road Monitoring.

Monitors required for SIP or Maintenance Plan: 15

Monitors Required for PAMS: 7

Monitors Required for PAMS: 7

EPA Regional Administrator-required monitors per 40 CFR 58, Appendix D 4.3.4: 3

Table 20 Minimum Monitoring Requirements for SO2

(Note: Refer to section 4.4 of Appendix D of 40 CFR Part 58.)

Area Area wide Wide Monitors Monitors Needed	0 9	0 0
Area Ar Wide Wi Monitors Mon	1 5	1 2
#Active Near Road Monitors	0	0
Population Weighted Emissions Index ² [million persons-tons per year]	80,472	10,149
Total SO2 ¹ [tons/year]	6128.19 2013	2316.73 2013
Counties	Los Angeles Orange	San Bernardino Riverside
CBSA	30180	40140

¹Using latest NEI data 2011, available on EPA website: http://www.epa.gov/ttn/chief/net/2011inventory.html ²Calculated by multiplying CBSA population and total SO2 and dividing product by one million.

Monitors required for SIP or Maintenance Plan: 7 EPA Regional Administrator-required monitors per 40 CFR 58, Appendix D 4.4.3: 0

Table 21 Minimum Monitoring Requirements for CO

(Note: Refer to section 4.2 of Appendix D of 40 CFR Part 58.)

JU. 116	(Note: Note: to section 4.2 of Appendix D of 40 of for all 20.)	r vibiladdy i o z	D 01 +0 C1 IV.1	ait 20.)	
CBSA	Population and Census Year	#Required Near Road Monitors ¹	#Active Near Road Monitors ²	#Required Area Wide Monitors	#Active Area Wide Monitors
30180	13,131,431 2013	0	0	0	17
40140	4,380,878 2013	0	0	0	8

¹Required beginning January 1, 2015
²Required sites to be active by January 1, 2015; to be collocated with near road NO2 sites. Monitors required for SIP or Maintenance Plan: 25

EPA Regional Administrator-required monitors per 40 CFR 58, Appendix D 4.4.2: 0

Table 22a Minimum Monitoring Requirements for Pb at NCore (Note: Refer to section 4.5 of Appendix D of 40 CFR Part 58.)

Construct Section 1.2 of Appendix 1.2 o							
CBSA Population and #Required #Requi		# Additional	Monitors Needed	U	O	U	0
CBSA Population and ## CBSA Census Year 13,131,431 20180 2013 40140 4,380,878 2013 20		motino Menito V #	# Active Mollings	1	٦	1	7
NCore Site		# Required	Monitors	1	ī	1	I
None Site CBSA (name, AQS ID) CBSA (name, AQS ID) Los Angeles (Main Street) 30180 060371103 Rubidoux 060658001 06065	01 TO CI IX I WILL 20.)	Population and	Census Year	13,131,431	2013	4,380,878	2013
(1905) Nore Site (name, AQS ID) Los Angeles (Main Street) 060371103 Rubidoux 060658001	a vibiladas i	CDCA	CDSA	20100	30100	40140	40140
	(110to-110to	NCore Site	(name, AQS ID)	Los Angeles (Main Street)	060371103	Rubidoux	060658001

Table 22b Source Oriented Pb Monitoring (Including Airports)

(Note: Refer to section 4.5 of Appendix D of 40 CFR Part 58.)

					Design Value			
		Pb Emissions ¹	Emission Inventory	Max 3-Month Design	Date(third month,	# Required	# Active	# Additional
Source Name	Address	(tons per year)	Source ² and Data Year	Value ¹ [ug/m3]	y ear)	Monitors	Monitors	Monitors Needed
I ong Beach Aimort	4100 E Donald Douglas					Pending 5		
Danoberty Field	Danoberty Field Dr. Long Beach, CA	8.0	NEI 2011	Unavailable	Unavailable	year	0	Т
Caugherry 1 1919	80806					assessment		
Von Marrie A image	16461 Sherman Way, Van	070	NEI 2011	20 0	7. 2012	ď	ď	ď
van nuys Amport	Nuys, CA 91406	0.00	NEI 2011	0.00	7; 2012)	o)
	12459-B Arrow Route,							
TAMCO	Rancho Cucamonga, CA	0.42	NEI 2011	Unavailable	Unavailable	0	1	0
	91739							
Tomal of Tools	2700 S Indiana St, Vernon,	0.1	MEI 3011	21/0	7. 2011	7	C	Ó
EXIDE 1 SCIIIODISSIES	CA 90058	0.1	NEI 2011	0.40	7; 2011	-1	7)
Tuoise Dottomy	9440 Ann St., Santa Fe	755000	NEI 2011	0.11	4. 2011	ď	7	d
110jan Dauciy	Springs, CA 90670	0.0000	NEI 2011	0.11	4, 2011	O	L	O
Onemeter Inc	720 S 7th Ave, City Of	81/00/0	NEI 2011	0.11	7: 2010	ď	7	ď
Quemeteo me.	Industry, CA 91746	0.00+0	NEI 2011	0.11	7, 2010	o	T	O

Consider data from past three years.

²Data found at http://www.epa.gov/ttn/chief/net/2011inventory.html (5/1/2014) Monitors Required for SIP or Maintenance Plan: 5

EPA Regional Administrator required monitors per 40 CFR 58, Appendix D 4.5(C) c: 0

Table 22c Minimum Monitoring Requirements for Pb, Non Source, Non NCore Monitoring

(Note: Refer to section 4.5 of Appendix D of 40 CFR Part 58.)

# Additional Monitors Needed	0	0
# Active Area Wide Monitors	5	3
# Required Area Wide Monitors	0	0
Annual Design Value [ug/m3], DV & Years	0.01, 2011-2013	0.01, 2011-2013
Population and Census Year	13,131,431 2013	4,380,878 2013
CBSA	30180	40140

DV Years - The three years over which the design value was calculated.

Table 23 Minimum Monitoring Requirements for PAMS (Note: Refer to section 4.5 of Appendix D of 40 CFR Part 58.)

	# PAMS Sites	Needed	0	0	0	U	>
	# Active PAMS	Sites	3	4	0	Y	9
(rights are seement in a right man early are man early	# Required PAMS	Sites	1	1	0	1	1
manddy i to on the	Trme	13pc	1 or 3	2	4	Upper Air	Meteorology
(1) (1) (1) (1) (1) (1) (1) (1)	Area	Alva			SCAQIMD Manitoning And	MOIIIOHIIB ALCA	

Table 24 Collocated Manual PM2.5, PM10, and Non-NCore Pb Networks

(Note: Refer to section 3.2.5, 3.3.5, 3.3.1, and 3.3.4.3 of Appendix A, 40 CFR Part 58.)

Method Code	# Primary Monitors	# Required Collocated Monitors	# Active Collocated Monitors
780, 120	20	3	3
063, 102	21	3	3
110 (Non Source)	8	1	2
110 (Source)	5	1	1

Table 25 Collocated Automated (continuous) PM2.5 Network (Note: Refer to section 3.2.5 & 3.3.5 of Appendix A, 40 CFR Part 58.)

Method Code	# Primary	# Required	# Active Collocated
	Monitors	Collocated Monitors	Monitors ¹
None	0	0	9

¹No FEM PM2.5 BAMs are listed as primary monitors; therefore no collocation requirement exists but all are collocated with FRM monitors.

Data Submittal and Archiving Requirements

As required in 40 CFR 58.16(a), data is reported via AQS including all ambient air quality data and associated quality assurance data for SO2, CO, O3, NO2, Near Road NO2, NO, NOy, NOX, Pb-TSP mass concentration, Pb-PM10 mass concentration, PM10 mass concentration, PM2.5 mass concentration, filter-based PM2.5 FRM/FEM field blank mass, sampler-generated average daily temperature, and sampler-generated average daily pressure, chemically speciated PM2.5 mass concentration data, PM10-2.5 mass concentration, meteorological data from NCore and PAMS sites, average daily temperature\average daily pressure for Pb sites and metadata records\information as specified by the AQS Data Coding Manual through December 31, 2013.

A data certification letter has been submitted to the EPA Regional Administrator certifying data collected at all SLAMS and at all FRM, FEM, and ARM SPM stations that meet criteria in appendix A, to part 58, for January 1 through December 31, 2013.

APPENDIX A

SCAQMD Network Depictions

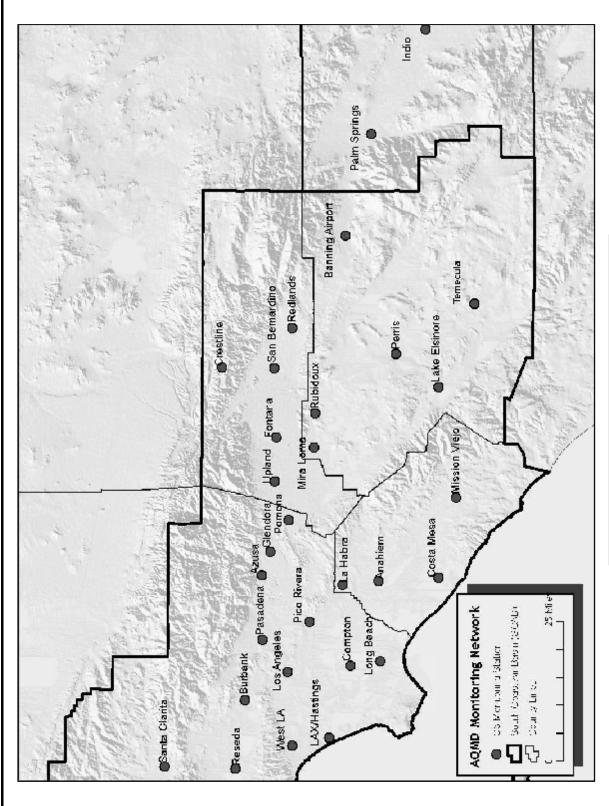


Figure 1 SCAQMD Ozone Monitoring Locations

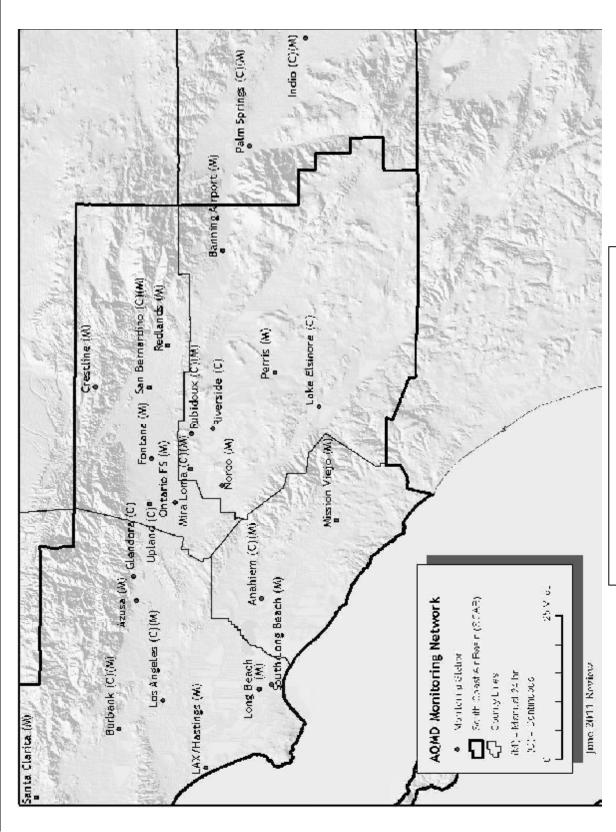


Figure 2 SCAQMD PM10 Monitoring Locations

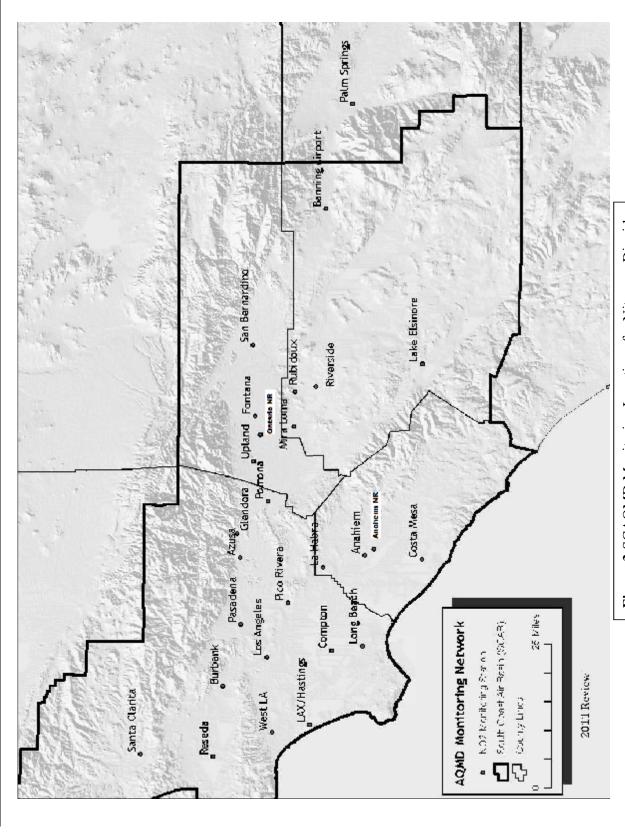


Figure 3 SCAQMD Monitoring Locations for Nitrogen Dioxide

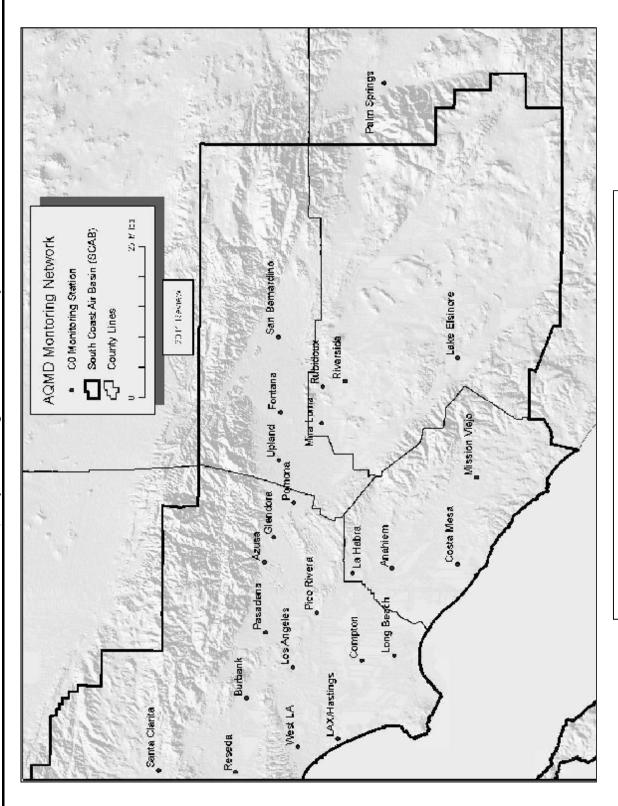


Figure 4 SCAQMD Monitoring Locations for Carbon Monoxide

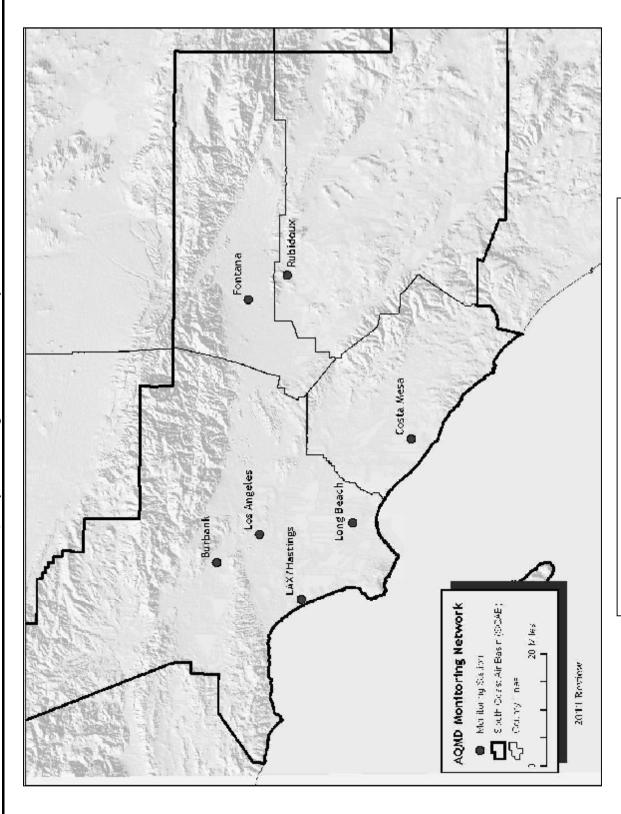


Figure 5 SCAQMD Monitoring Locations for Sulfur Dioxide

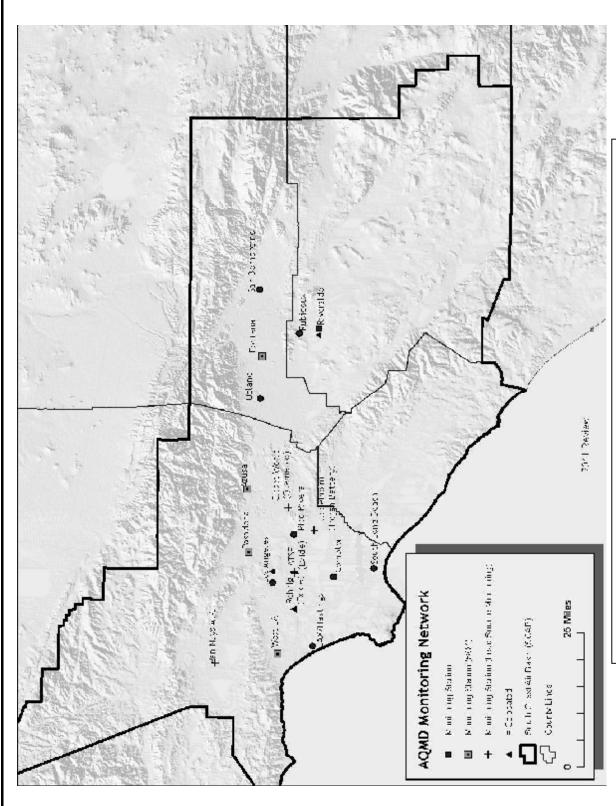


Figure 6 SCAQMD Source and Ambient Particulate Lead Monitoring Locations

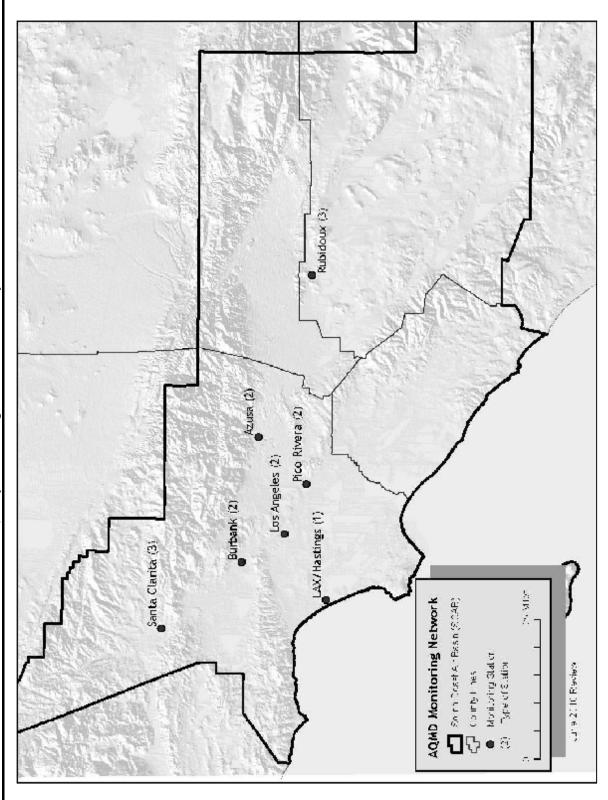
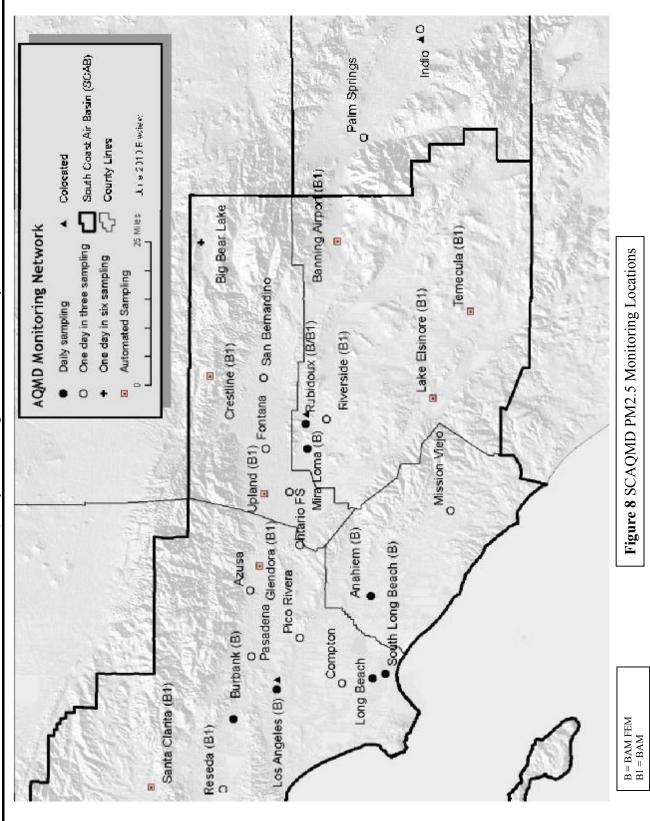



Figure 7 SCAQMD PAMS Monitoring Locations

2012 AIR QUALITY SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

	Г	S	spended	Suspended Particulates PM10 50	tes PM10	0.00		Fine P	articulate	Fine Particulates PM 2.5 40		Parti	Particulates TSP	de S		Lead b		PMIOS	PM10 Sulfate
2012 Seurc/Receptor Area No. Location	Station No.	7 5 - 10 E	Mac. Conc. in uplus Manuel	No. (%) Exceeding Septem > 150 patent 34 hour	No (%) Simples Exceeding Standards Salema Salema > 150 > 50 raginal pagent Change Maham	Amad Average Conc. 6 (AAM) pp/m²	28.8	Mac. Cosc. 11 pagents	or Percentile Conc. in 14/10 ³ 34-hour	No. (%) Samples Examples Examples Federal Std > 35 pigles ³ 24 hour	Annual Average Conc. (AAM) µgm²	N Day	Max Cosc. in 21-hour	Armad Average Core. (AAM) pg/m²	Mar. Monthly Average Conc.	Max. 3.Months Rolling Averages µg/m²	Max. Quanterly Average Com. pg/fm ²	Nu Den	Max. Conc. in paint
LOS ANGELES COUNTY			Ī				3				1								l
CentallA	100	8	DE.	0	+	30.2	Ħ	587	31.8	+	12,35				0.014	0,011			
2 Northwest Coasta LA County	100	1	t ë	1 6	1.6	1 9	t	1	1	1	1				1000	2000	T.		
S Applicat Coastal LA County	2	200	7.0	0 0	0.0	83.8	200	0.00	1 7	1.	-				6000	0000			
4 South County I A County 1	100	1 5	2 3	9 0		36.6	100	10.7	26.4		10.67				0.000	0.000			
4 South County I.A. County 3	833	1			-	1	ı				-			ı			1		
A Wood Son Secrements Voltage	104				1 1 1		911	416	31.3	0	10.48		l	I	ŀ		ŀ		
7 Front Son Bernardo Valler	000	99	11	0		36.4	384	10.1	10.00		19.03				69				
Il West San Calerie Patter	890		i i	1	. 4		8	36.3	17	0	10.13				151				
9 East San Gabriel Valley 1	000	-	75	0		30.3	211	39.6	25.0	-	11.02				31	,	1.1		
9 East San Cabriel Valley 2	501	Ų.		,	4	-	1	h	37	1	1				91	T.	'n		
III Romena/Walnut Valley	870				1	-	-		-	1							-		
11 South San Gabrie! Valley	688	1	jt	1	1	1	119	45,3	535.5	-	11.83				4000	0,000			
12 South Central LA County	112	15	ı	1	1	10-10	113	512	70.3	-	11.49			Ī	0.000	0.008			
13 Santa Clarita Valley	000	88	in the	0		19.6	1				00000			7					0
ORANGE COUNTY 16 North Change Control	3177	. 2	93	9	V	- 0	9	Ö	3	1	3)				21	ij	ä		
	317.6	9	57	0	0	33.4	347	106	24.0	*	10.61					,	- 1		
18 North County County	3100										1000				(3)				
19 Saddiebuck Valley	3812	9	22	0	0	17.3	12	27.6	17.6	0	791			Ī	- 1	Ţ	ì		
RIVERSIDE COUNTY			ZIGOL		1									ı		l			
	4155	6	57	0	1	30.0	1	1	8	1						-	1		
	##	173	20	0	0.0	34.5	362	38.1	33.7	1	13,51				6000	0,000			
	4140	13	1	1.7	1	1	5	303	90	01	22				6000	0.004			
23 Mini Loring	200	8 9	e t	0 0	ο.	30.0	To.	287	90'1	,	970			Ī	107	1			
Company of the Compan	414	ii ii	200		11 11 11	(P)					-	İ	ı	ı		10 10			
D. Lake Holmone	4108	9	K.	1		(1	1		T.	700				XS.	1	1		
	416	99	419	0	0	101			1		(Si				(3)		1-1		
	4137	99	G.	0	0	36.4	111	155	13.7	0	05.0				2	,			
30 Coachella Valley 2**	4157	-	104	0	-	20.5	B	8	16.4	0	754			Ī	351	. !			
SAN BERNARDONO COUNTY																			
	\$175	919	1	T	4	(Alexander)	t	T.	1	T	1				9000	0.006			
	1817	Œ.	5	0	*	808	8	197	28.6	0	124				1	9	1		
	2016	91	6	0	0	MS	91	90.0	33.6		12.82				200	A date	ä		
M. Central San Bernandino Valley 2	3200	8	73	0	1000	38.5	101	74.8	27.1	0	11.76		l	I	0000	0.000			I
15 East San Bernardmo Valley	4181	30	\$ J	00	0.0	667	1				1.1								
N. Fast San Bernardine Mountains	MIN		r		20 1		6	36.4	24	-	3.00			Ī	02)		S i		
MINISTER WASHING	ı		100	9	100	2000		200		ļ			l	Ī	2000	1100		L	
Market months	I		80	0	N.	38.9		387	32,0	-	15,000			I	MARKET	1100			
SOUTH COAST AIR HASHN			98	0		90.0		487	19.6	1.5	15.06				0.014	0.011			

FRM PM thampter were collected every 6 days as all nitres accept for Stations 4144 and 4151, where samples were collected every 3 Mai statistics intend shows are found to the formation of the stress beautions. Mar 24-hour servings PM10 at allow with RFM mentioning was 142 pg/m, in Plant Springs in Conclusts Vallay. The PRM Basis's max was 104 pg/m, Federal Reference Method (FRM) PM III samples were collected ex Method (FRM) PM III continuous nomines were operated at some

Primad on Recycled e. Federal annual PALOs 29 grin" was reveled in 2006. State number 606, 072 077, 032 1/2, 4144 and 4165 were taken dully, and under strates Nation to make a state in makes 606, 072 077, 032 1/2, 4144 and 4165 were taken which states makes a state a state in makes 606, 072 077, 032 1/2, 4144 and 4165 were taken which states a state a state a state a state in makes 606, 072 077, 032 1/2, 4144 and 4165 were taken which states a state of the state a state and a state a

APPENDIX B

Detailed Site Information

Detailed information for air monitoring locations are included in site reports. For information on monitoring objectives, purposes and scales, please refer to the main text of this plan.

- Anaheim
- ATSF (Exide)
- Azusa
- Banning Airport
- Big Bear
- Burbank
- Closet World (Quemetco)
- Compton
- Costa Mesa
- Crestline
- Fontana
- Glendora
- Indio
- La Habra
- Lake Elsinore
- LAX Hastings
- Long Beach North
- Long Beach South
- Los Angeles
- Mira Loma (Van Buren)
- Mission Viejo
- Norco
- Ontario Fire Station
- Palm Springs
- Pasadena
- Perris
- Pico Rivera #2
- Pomona
- Redlands
- Rehrig (Exide)
- Reseda
- Riverside
- Rubidoux
- San Bernardino
- Santa Clarita
- Temecula
- Uddelholm (Trojan Battery)
- Upland
- Van Nuys Airport
- West Los Angeles

Table 26 Selected POC, Parameter and Method Codes¹

Instrument	Pollutant	POC Code	Method Code	Parameter Code
910	NATTS VOCs	4	172	43218, 43372, 43505, 43551, 43552, 43802, 43803, 43804, 43815, 43817, 43824, 43829, 43843, 43860, 45109, 45201, 45202, 45203, 45204, 45220, 45805, 45807.
910	PAMS VOCs	2, 7, 2, or 8	126	43000, 43102, 43202, 43203, 43204, 43205, 43206, 43212, 43214, 43216, 43217, 43220, 43221, 43224, 43226, 43227, 43230, 43231, 43232, 43233, 43235, 43238, 43242, 43243, 43244, 43245, 43247, 43248, 43249, 43250, 43252, 43253, 43261, 43262, 43263, 43280, 43284, 43285, 43291, 43954, 43960, 45109, 45201, 45202, 45203, 45204, 45207, 45208, 45209, 45210, 45211, 45212, 45213, 45218, 45219, 45220, 45225.
ATEC 8000	PAMS Carbonyls	2 or 8	102	43502, 43503.
GMW 1200	PM10	1,2,4, or 6	063 and 102	81102, 85101, 82203, 82308, 82403.
Anderson RAAS	PM2.5 Particulate	1 or 2	780	68108, 68107, 68106, 68105, 68104, 68103, 68101, 68109, 68102
Anderson RAAS	PM2.5 Particulate	1 or 2	120	88101
Met One SASS	Speciated PM2.5	11 or 12	812	88301, 88306, 88302, 88403.
Met One SASS	Speciated PM2.5	11 or 12	810	68108, 68107, 68106, 68105, 68104, 68103, 88502.
Met One SASS	Speciated PM2.5	11 or 12	780	68101, 68109, 68102.
Met One SASS	Speciated PM2.5	11 or 12	811	88102, 88103, 88107, 88110, 88111, 88118, 88115, 88112, 88113, 88114, 88126,88128, 88132, 88134, 88136, 88152, 88180, 88176, 88154, 88165, 88168, 88169, 88160, 88161, 88179, 88164, 88183, 88167.
Met One SASS	Speciated PM2.5	11 or 12	816	88380, 88383, 88384, 88385, 88370, 88374, 88375, 88376, 88377.
Xontech 924	CR6	4 or 5	920	12115
Xontech 924	Carbonyls	4	102	43502, 43503.
Xontech 924	Metals	2 or 4	110	85102, 85103, 85105, 85110, 85128, 85132, 85136.

Sampler and monitor locations along with specific method codes are identified in the detailed site plans, Appendix B

APPENDIX C

PM2.5 Continuous Monitor Comparability Assessment and Request for Waiver

Introduction

The SCAQMD monitoring program has historically operated PM2.5 continuous monitors primarily to support forecasting and reporting of the Air Quality Index (AQI). These monitors supply data every hour to update the AQI on our web site as well as national web sites such as AIRNow (www.airnow.gov). SCAQMD has been using these monitors since the early part of the last decade as we implemented the PM2.5 monitoring program. Over the last few years, a number of PM2.5 continuous monitors have been approved as Federal Equivalent Methods (FEMs). By utilizing an approved FEM, any subsequent data produced from the method may be eligible for comparison to EPA's health based standard known as the NAAQS. The primary advantage of operating a PM2.5 continuous FEM is that it can support the AQI, while also supplying data that are eligible for comparison to the NAAQS. Thus, a network utilizing PM2.5 continuous FEMs can potentially lower the number of filter-based FRMs operated in the network, which are primarily used for comparison to the NAAQS. These filter-based FRMs are resource intensive in that they require field operations as well as pre- and post-sampling laboratory analysis which results in data not being available for approximately 2-4 weeks after sample collection.

The SCAQMD monitoring program has been evaluating PM2.5 continuous FEMs over the past several years. Although the PM2.5 continuous FEMs are automated methods, these methods still require careful attention in their set-up, operation, and validation of data. Once enough data was collected, we began to evaluate the performance of these methods compared to collocated FRMs. That evaluation is explained further below and includes our request regarding the use of the data from these methods.

Request for Exclusion of PM2.5 Continuous FEM data from Comparison to the NAAQS

The network technical requirements for requesting exclusion of data from comparison to the NAAQS are identified in 40 CFR §58.11(e). These requirements refer to the performance criteria

described in Table C-4 to subpart C of part 53. To accommodate the differences in how routine monitoring agencies operate their networks, several additional provisions are described in §58.11(e). When a topic is not addressed in §58.11(e), then the test specifications from table C-4 applies.

As shown in the Table below, the slope of the regression between collocated FRM and FEM measurements at the Anaheim, Central Los Angeles, North Long Beach, South Long Beach, and Rubidoux stations is higher than 1.1, which is outside the test specification indicated in §53 Table C-4 (i.e. slope = 1 ± 0.1). Although the slope criteria was met, the intercept of the regression relationship between FRM and FEM data at the Burbank and Mira Loma monitoring sites does not meet the test specifications of between 15.05 - (17.32 × slope), but not less than - 2.0; and 15.05 - (13.20 × slope), but not more than +2.0 (also indicated in §53 Table C-4).

Thus, in accordance with the PM NAAQS rule published on January 15th, 2013 (78 FR 3086) an

d specific to the provisions detailed in §58.10 (b)(13) and §58.11 (e), SCAQMD is requesting that data from the all of the SCAQMD FEM PM2.5 monitors be set aside for comparison to the NAAQS. While SCAQMD is working to optimize the monitoring instrumentation to meet all of our monitoring objectives, the performance is not yet at a point where the comparability of the PM2.5 continuous FEMs operated in our network compared to collocated FRMs is acceptable. After assessing the comparability of the PM2.5 FEMs to the collocated FRMs for our network, the sites listed below do not meet the comparability requirements. Detailed one-page assessments from which the information described below was obtained are included at the end of this section.

Table - Request for Exclusion of PM2.5 Continuous FEM Data

Correlation (r)		0.94	0.89	0.93	0.83	0.94	0.93
Meets Bias Requirement		No	No	No	No	No	No
Intercept (y)		2.62	4.47	1.77	4.86	2.23	0.35
Slope (m)	7.0	1.16	1.10	1.21	1.15	1.16	1.27
Continuous/ FRM Sampler Pairs Per Season	sated with FRMs	Winter = 247 Spring = 254 Summer = 227 Fall = 260 Total = 988	Winter = 259 Spring = 217 Summer = 262 Fall = 250 Total = 988	Winter = 226 Spring = 161 Summer = 170 Fall = 182 Total = 739	Winter = 176 Spring = 160 Summer = 156 Fall = 228 Total = 720	Winter = 214 Spring = 228 Summer = 255 Fall = 175 Total = 872	Winter = 128 Spring = 169 Summer = 134 Fall = 121 Total = 552
PM _{2.5} Cont End Date	are colloc	12/31/	12/31/	09/29/	12/31/	12/31/	12/31/
PM _{2.5} Cont Begin Date	FEMs that	01/01/	01/01/	01/01/	10/01/	01/01/	01/01/
Cont Method Description	Sites with PM _{2.5} continuous FEMs that are collocated with FRMs	Met-One BAM 1020 w/VSCC					
Cont	Sites	3	3	3	6	3	3
Site ID		-650-90	06-037- 1002	-/20-90	1103	06-037- 4002	06-037-
City		Anaheim	Burbank	Los	Angeles	Long Beach	Long Beach
Site Name		Anaheim	Burbank	Central Los	Angeles	North Long Beach	South Long Beach

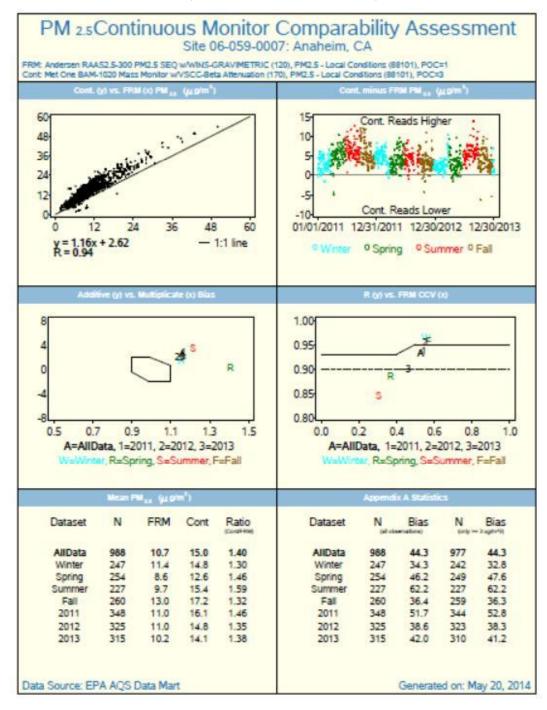
Air Quality Monitoring Network Plan - July 2014

0.89	68.0	0.90
°Z	No	No
0.48	2.26	4.12
1.15	1.12	1.10
Winter = 177 Spring = 139 Summer = 231 Fall = 265 Total = 812	Winter = 170 Spring = 152 Summer = 212 Fall = 265 Total = 799	Winter = 255 Spring = 244 Summer = 257 Fall = 265 Total = 1021
01/31/	12/31/	12/31/
01/01/	08/02/	01/01/
Met-One BAM 1020 w/PM2.5 SCC	Met-One BAM 1020 w/VSCC	Met-One BAM 1020 w/VSCC
8	6	3
-590-90	8001	8005
-	Kubiabux	Mira Loma
Riverside/	Rubidoux	Mira Loma

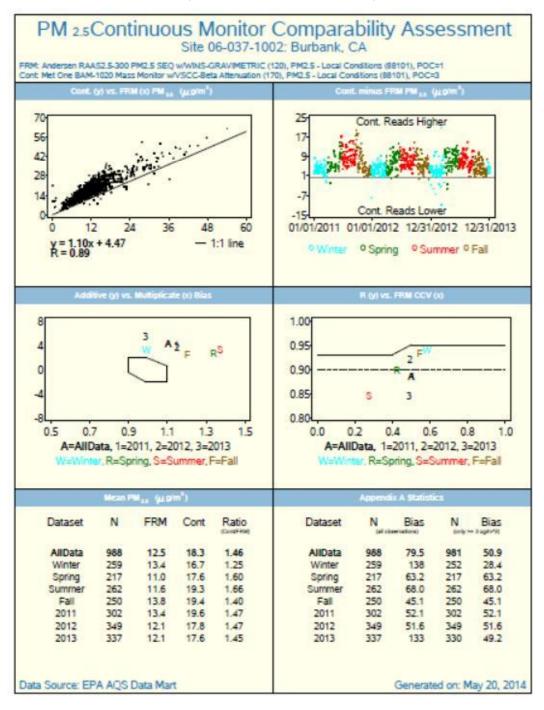
*2011 data have not been submitted to AQS

Period of Exclusion of Data from the PM2.5 Continuous FEMs

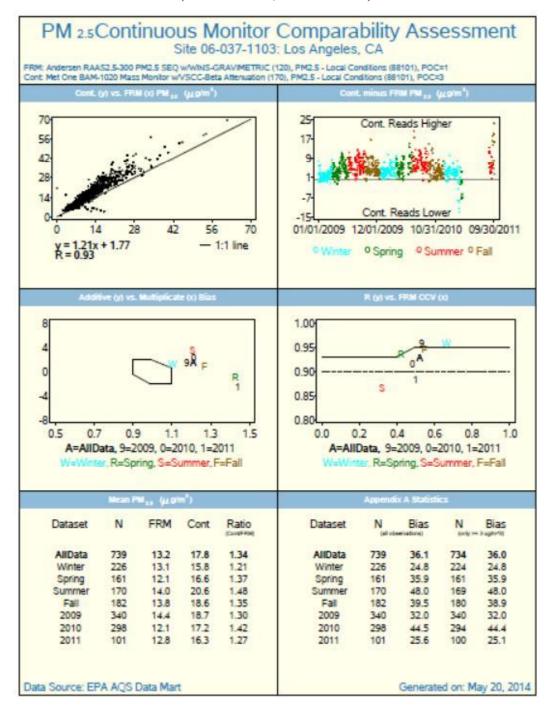
The above table details the period of available data by monitor on which the request to exclude PM2.5 continuous FEM data is based. Per EPA Regional Office approval, these data will be entered into EPA's AQS database in a manner where the data are only used for the appropriate monitoring objective(s) (i.e., use data for just the AQI). Additionally, SCAQMD will continue to load any new data generated for the next 18 months (intended to represent the period until December 31 of 2015) in the same manner or until such time we request and receive approval from the EPA Regional Office to change the status of these monitors.

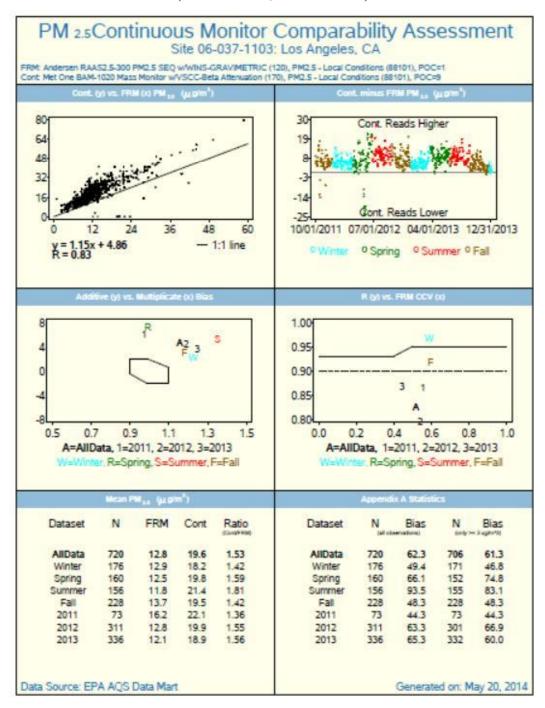

PM2.5 Continuous FEM data for Reporting the AQI

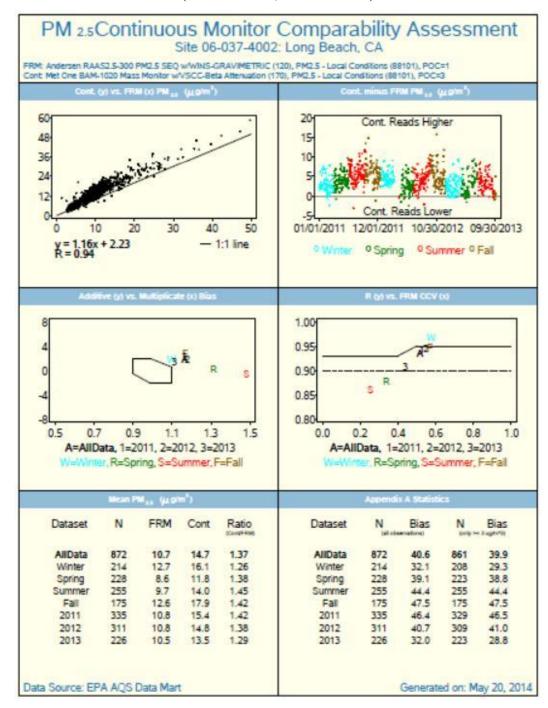
While the analysis supports the request for the monitors above not be used for comparison to the NAAQS, the data are of sufficient comparability to collocated FRMs that they be used for public AQI reporting. Therefore, with EPA Regional Office approval we will report these data on our web site and to AIRNow (www.airnow.gov). As such, data submitted to EPA's AQS database will be under "acceptable AQI" reporting (i.e., parameter code 88101) so that data users will know that these data are appropriate for use in AQI calculations, but not NAAQS comparison.

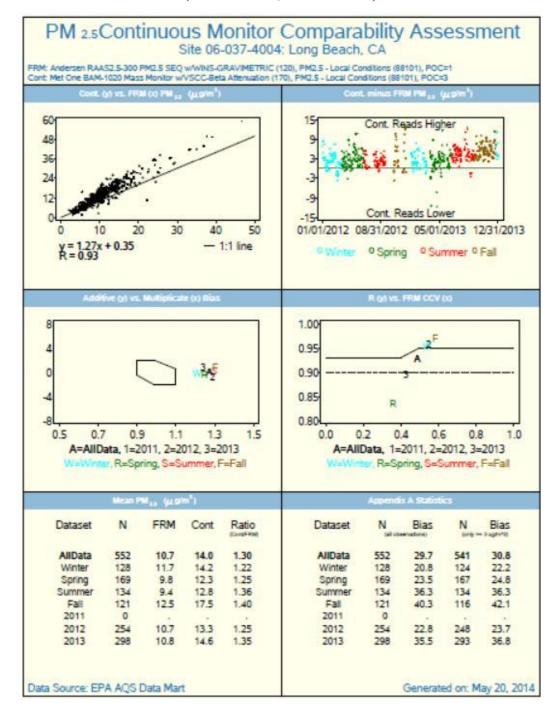

Assessments

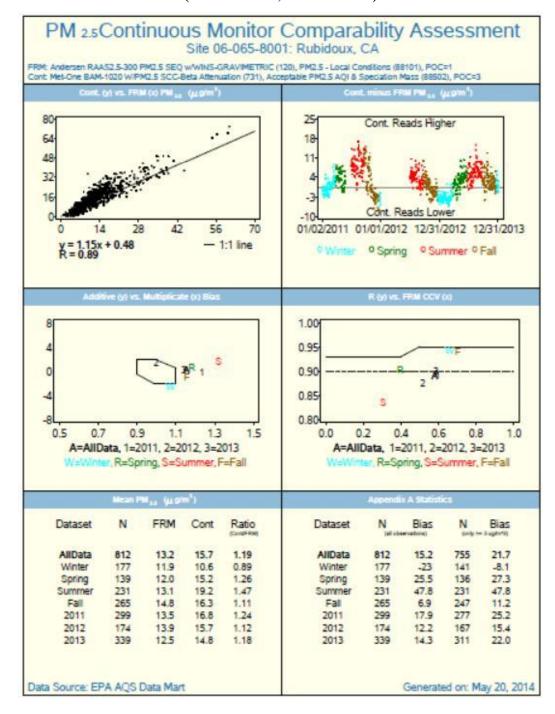
The following one-page assessments are locations where our agency has collocated PM2.5 FRM and continuous FEM monitors. Each of these assessments is represented in the "Table – Request for Exclusion of PM2.5 Continuous FEM Data" above.

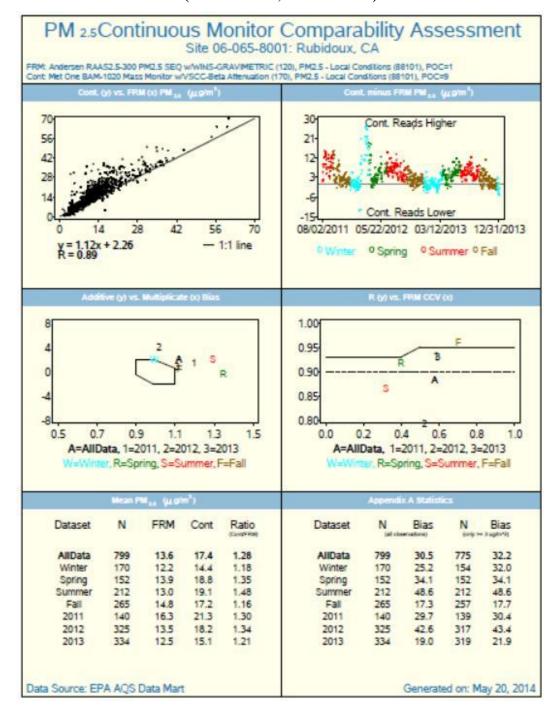

Anaheim

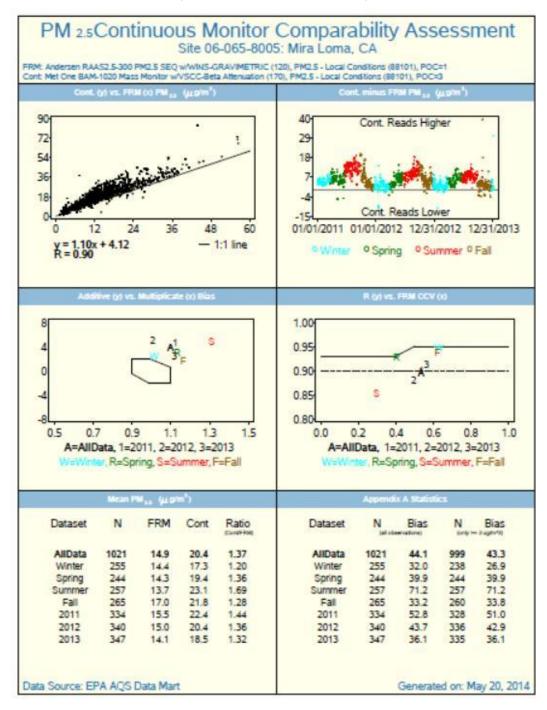

Burbank


Central Los Angeles


Central Los Angeles


North Long Beach


South Long Beach


Rubidoux

Rubidoux

Mira Loma

